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One of the particularities of information encoded as DNA strands is that a string u contains

basically the same information as its Watson–Crick complement, denoted here as θ(u).
Thus, any expression consisting of repetitions of u and θ(u) can be considered in some sense

periodic. In this paper, we give a generalization of Lyndon and Schützenberger’s classical

result about equations of the form ul = vnwm, to cases where both sides involve repetitions

of words as well as their complements. Our main results show that, for such extended

equations, if l � 5, n,m � 3, then all three words involved can be expressed in terms of a

commonword t and its complement θ(t). Moreover, if l � 5, then n = m = 3 is an optimal

bound. These results are established based on a complete characterization of all possible

overlaps between two expressions that involve only someword u and its complement θ(u),
which is also obtained in this paper.
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1. Introduction

Periodicity andprimitivenessofwordsare fundamental properties in combinatorics onwordsand formal language theory.

Theirwide-rangingapplications includepattern-matchingalgorithms (see, e.g., [1,2]) anddata-compressionalgorithms (see,

e.g., [3]). Sometimes motivated by their applications, these classical notions have been modified or generalized in various

ways. A representative example is the “weak periodicity” of [4] whereby a word is called weakly periodic if it consists of

repetitions of words with the same Parikh vector. This type of period was also called abelian period in [5]. Carpi and de Luca

extended the notion of periodic words into that of periodic-like words according to the extendability of factors of a word

[6]. Czeizler et al. have proposed the notion of pseudo-primitiveness (and pseudoperiodicity) of words in [7], motivated by

the properties of information encoded as DNA strands.

DNA stores genetic information primarily in its single-stranded form as an oriented chain made up of four kinds of

nucleotides: adenine (A), cytosine (C), guanine (G), and thymine (T). Thus, a single-strandedDNAcanbeviewedas awordover

the four-letter alphabet {A, C, G, T}. Due to theWatson–Crick complementarity of DNA strands,wherebyA is complementary
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to T, and C is complementary to G, single-stranded DNA molecules interact with each other. Indeed, two Watson–Crick

complementary DNA single strands with opposite orientation will bind to each other by weak hydrogen bonds between

their individual bases and form thewell-known DNA double helix structure. In the process of DNA replication, a DNA double

strand is separated into its two constituent single strands, each of which serves as a template for the enzyme called DNA

polymerase. Starting from one end of a DNA single strand, DNA polymerase has the ability to build up, one nucleotide at a

time, a new DNA strand that is perfectly complementary to the template, resulting in two copies of the DNA double strand.

Thus, two DNA strands which are Watson–Crick complementary to each other can be considered “equivalent” in terms of

the information they encode.

The fact that one can consider a DNA strand and its Watson–Crick complement “equivalent” led to natural and theo-

retically interesting extensions of various notions in combinatorics of words and formal language theory such as pseudo-

palindrome [8], pseudo-commutativity [9], as well as hairpin-free and bond-free languages (e.g., [10–12]). Watson–Crick

complementarity has beenmodeledmathematically by an antimorphic involution θ , i.e., a function that is an antimorphism

(θ(uv) = θ(v)θ(u) for any words u, v), and an involution (θ2 is the identity function). The aforementioned new concepts

and notions are based on extending the notion of identity between words to that of “equivalence” between words u and

θ(u), in the sense that an occurrence of θ(u) will be treated as another occurrence of u, albeit disguised by the application

of θ .
In [7], a word w is said to be θ-primitive if we cannot find any word x that is strictly shorter than w such that w can be

written as a combination of x and θ(x). For instance, if θ is the Watson–Crick complementarity then ATCG is θ-primitive,

whereas TCGA is not because TCGA = TCθ(TC). The periodicity theorem of Fine and Wilf – one of the fundamental results

on periodicity of words, see, e.g., [13,14] – was also extended as follows “For given words u and v, how long does a common

prefix of aword in {u, θ(u)}+ and aword in {v, θ(v)}+ have to be, in order to imply that u, v ∈ {t, θ(t)}+ for someword t?”.

In this paper, we continue the theoretical study of θ-primitive words by extending another central periodicity result, due

to LyndonandSchützenberger [15]. Theoriginal result states that, if the concatenationof twoperiodicwords vn andwm canbe

expressed in termsof a third periodu, i.e.,u� = vnwm, for some�,m, n � 2, then all threewordsu, v, andw canbe expressed

in terms of a common word t, i.e., u, v,w ∈ {t}+ (see also [16] and Chapter 5 from [14] for some of its shorter proofs and

[17,18] for some other generalizations). Replacing identity of words by the weaker notion of “equivalence” between words

u and θ(u), for a given antimorphic involution θ , we define an extended Lyndon and Schützenberger equation as

u1 · · · u� = v1 · · · vnw1 · · ·wm, (1)

where u1, . . . , u� ∈ {u, θ(u)}, v1, . . . , vn ∈ {v, θ(v)}, and w1, . . . ,wm ∈ {w, θ(w)} with �, n,m � 2. For this extended

Lyndon and Schützenberger equationwe ask the following question: “What conditions on �, n,m imply that all three words

u, v,w can be written as a combination of a word and its image under θ , i.e., u, v,w ∈ {t, θ(t)}+ for some word t?”

This paper gives a partial answer to the question that whenever � � 5, n,m � 3, Eq. (1) implies u, v,w ∈ {t, θ(t)}+ for

some word t (Theorem 27), and that once either n or m becomes 2, we can construct u, v,w which satisfy Eq. (1), but such

a word t does not exist (Examples 1 and 2). Therefore, for any � � 5, n = m = 3 is an optimal bound. In the case when

� = 3 or � = 4, the problem of finding optimal bounds remains open, though Examples 1 and 2 work even in these cases.

Our proofs are not generalizations of the methods used in the classical case, since one of the main properties used therein,

i.e., the fact that the conjugate of a primitive word is still primitive, does not hold for θ-primitiveness any more.

Prior to the proof of the positive result, we characterize all non-trivial overlaps between two expressions α(v, θ(v)),
β(v, θ(v)) ∈ {v, θ(v)}+ for a θ-primitiveword v. Formally speaking,we show that the equalityα(v, θ(v))·x = y·β(v, θ(v))
with x and y shorter than v is possible, andweprovide all possible representations of the involvedwords v, x, y (Theorem14).

Note that this result is in contrast to the classical case (where the two expressions involve only a word v, but not its image

under θ ).
The paper is organized as follows. In Section 2, we fix our terminology and recall some known results. In Section 3, we

provide the characterization of all possible overlaps of the formα(v, θ(v)) ·x = y ·β(v, θ(v))withα(v, θ(v)), β(v, θ(v)) ∈
{v, θ(v)}+ and x, y shorter than v. Finally, in Section 4 we provide our extension of Lyndon and Schützenberger’s result.

2. Preliminaries

Herewe introduce notions and notation used in the following sections. For details of each, readers are referred to [13,14].

Let � be a finite alphabet. We denote by �∗ the set of all finite words over �, by λ the empty word, and by �+ the set

of all nonempty finite words. The catenation of two words u, v ∈ �∗ is denoted by either uv or u · v. The length of a word

w ∈ �∗ is denoted by |w|. We say that u is a factor (a prefix, a suffix) of v if v = t1ut2 (resp. v = ut2, v = t1u) for some

t1, t2 ∈ �∗. We denote by Pref(v) (resp. Suff(v)) the set of all prefixes (resp. suffixes) of the word v. We say that two words

u and v overlap if ux = yv for some x, y ∈ �∗ with |x| < |v|. An integer p � 1 is a period of a word w = a1 . . . an, with

ai ∈ � for all 1 � i � n, if ai = ai+p for all 1 � i � n − p.

A word w ∈ �+ is called primitive if it cannot be written as a power of another word; that is, if w = un, then n = 1 and

w = u. For a word w ∈ �+, the shortest u ∈ �+ such that w = un for some n � 1 is called the primitive root of the word
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w and is denoted by ρ(w). It is well-known that two words u, v commute, i.e., uv = vu if and only if u, v have the same

primitive root. This is rephrased as the following proposition.

Proposition 1. Let u ∈ �+ be a primitive word. If u2 = xuy, then either x = λ or y = λ.

A mapping θ : �∗ → �∗ is called an antimorphism if for any words u, v ∈ �∗, θ(uv) = θ(v)θ(u). A mapping

θ : �∗ → �∗ is called an involution if θ2 is the identity. As mentioned in Section 1, an antimorphic involution is a

mathematical formalization and extension of the Watson–Crick complementarity. Throughout this paper we will assume

that θ is an antimorphic involution on a given alphabet�. A wordw ∈ �∗ is called a θ-palindrome ifw = θ(w) (see [8,19]).
A word is called a pseudo-palindrome if it is a θ-palindrome for some antimorphic involution θ .

The notions of periodic and primitive words were extended in [7] in the following way. A word w ∈ �+ is θ-periodic if
w = w1 . . .wk for some k � 2 and words t,w1, . . . ,wk ∈ �+ such that wi ∈ {t, θ(t)} for all 1 � i � k. Following [8], in

less precise terms, a word which is θ-periodic with respect to some antimorphic involution θ is also called pseudoperiodic.

The word t in the definition of a θ-periodic word w is called a θ-period of w. We call a word w ∈ �+ θ-primitive if it is not

θ-periodic. The set of θ-primitive words is strictly included in the set of primitive ones, see [7]; for instance, if we take a �= b

and θ(a) = b, θ(b) = a, then the word ab is primitive, but not θ-primitive. We define the θ-primitive root of w, denoted by

ρθ (w), as the shortest word t such that w ∈ t{t, θ(t)}∗. Note that if w is θ-primitive, then ρθ (w) = w.

The Fine andWilf theorem, originally formulated for sequences of real numbers in [20], illustrates another fundamental

periodicity property in its form forwords [13,14]. It states that for twowords u, v ∈ �∗, if a power of u and a power of v have

a common prefix of length at least |u| + |v| − gcd(|u|, |v|), then u and v are powers of a common word, where gcd(n1, n2)
denotes the greatest common divisor of two integers n1, n2. Moreover, the bound |u| + |v| − gcd(|u|, |v|) is optimal.

This theoremwas extended in [7] for the case when instead of powers of two words u and v, we look at expressions over

{u, θ(u)} and {v, θ(v)}, respectively. The extended theorem consists of the following two variants.

Theorem 2 ([7]). Let u, v ∈ �+ be two distinct words with |u| > |v|. If there exist two expressions α(u, θ(u)) ∈ u{u, θ(u)}∗
and β(v, θ(v)) ∈ v{v, θ(v)}∗ having a common prefix of length at least 2|u| + |v| − gcd(|u|, |v|), then ρθ (u) = ρθ (v).
Moreover, the bound 2|u| + |v| − gcd(|u|, |v|) is optimal.

Theorem 3 ([7]). For u, v ∈ �+, if a word is in both u{u, θ(u)}∗ and v{v, θ(v)}∗, then ρθ (u) = ρθ (v).

In the following, we present several results on word equations which involve the antimorphic involution θ .

Lemma 4 ([7]). For u, v ∈ �∗, if uv = θ(uv) and vu = θ(vu), then u, v ∈ {t, θ(t)}∗ for some word t ∈ �+.

When considering word equations that involve the antimorphic involution like those in the previous lemmas, one often

encounters the θ-commutativity of words. For two words u, v, u θ-commutes with v if uv = θ(v)u [9]. This is a special

case of the conjugacy of words xz = zy. The solution to this conjugacy equation is well-known: x = (pq)j , y = (qp)j , and
z = (pq)ip for some i � 0, j � 1 and p, q ∈ �∗ such that pq is primitive (we can assume j = 1 if we give up the primitivity

of pq). Thus, the solution to the θ-commutativity of words is characterized as follows:

Proposition 5 ([9]). For words u, v ∈ �+ and an antimorphic involution θ , if uv = θ(v)u holds, then u = (rt)ir and v = (tr)j

for some i � 0, j � 1, and θ-palindromes r, t ∈ �∗ such that rt is primitive.

Using the characterizations of commutativity and θ-commutativity, we prove several results of use.

Lemma 6. Let x, y, z ∈ �+ with x = θ(x) and y = θ(y). If xz = zy holds, then x, y, z ∈ {t, θ(t)}∗ for some t ∈ �+.

Proof. Asmentioned above, the conjugacy implies that x = pq, y = qp, and z = (pq)jp for some p, q ∈ �∗ and j � 0. Since

x = θ(x) and y = θ(y), we have pq = θ(pq) and qp = θ(qp). Then, Lemma 4 implies that there exists a word t ∈ �+ such

that p, q ∈ {t, θ(t)}∗. �

Lemma 7. Let x, y, z ∈ �+ with x = θ(x) and z = θ(z), and let v be a primitive word. If v = xz = zy holds, then x = r(tr)i+j ,

y = (tr)jr(tr)i , and z = r(tr)i for some i � 0, j � 1, and two non-empty θ-palindromes r, t such that rt is primitive.

Proof. Let v = xz = zy. This conjugacy equation can be solved as x = pq, y = qp, and z = (pq)kp for some words p, q
and k � 0. We claim that neither p nor q is empty. Indeed, if q = λ, then v = pk+2, but this contradicts the primitivity of

v. If p = λ, then we reach the same contradiction when k � 1; and if k = 0, then z would be empty, which is against the

non-emptiness assumption on z. Thus, p �= λ and q �= λ.
The assumption z = θ(z) implies p = θ(p), which derives pq = θ(q)p from x = θ(x). Moreover, k must be 0 because

otherwise z = θ(z) implies q = θ(q), and this turns the above θ-commutativity equation into the commutativity equation

pq = qp. Since both p and q are non-empty, this equation implies that p and q are powers of the same word, and hence,
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v would not be primitive. As seen in Proposition 5, the solution to the θ-commutativity pq = θ(q)p is characterized as

p = r(tr)i and q = (tr)j for some i � 0, j � 1, and θ-palindromes r, t such that rt is primitive. Thus, x = r(tr)i+j ,

y = (tr)jr(tr)i, and z = p = r(tr)i. �

Lemma 8. Let y ∈ �+ be a nonempty θ-palindrome and z ∈ �+ be a nonempty word with |y| � |z|. If zθ(z) is a prefix of

yθ(z)yz, then ρ(y) = ρ(z).

Proof. The conclusion is trivial if |y| = |z| so that let us assume that |y| < |z|. Due to zθ(z) ∈ Pref(yθ(z)yz), it is clear that
y ∈ Pref(z), that is, y ∈ Suff(θ(z)). Combining this with the prefix relation gives the θ-commutativity

zy = yθ(z). (2)

Using this, we can rewrite the prefix relation as zθ(z) ∈ Pref(zyyz), that is, θ(z) ∈ Pref(yyz). Due to this and |y| < |z|, we

can let θ(z) = yz1 for some z1 ∈ Pref(yz).
If 1

2
|z| � |y| < |z|, then |z1| � 1

2
|z|, and hence, z1 ∈ Pref(yz)means z1 ∈ Pref(y). This actually means that z1 ∈ Pref(z)

because y ∈ Pref(z) and the prefix relation is transitive. Thus, θ(z1) ∈ Suff(θ(z)). Combining this with θ(z) = yz1, we

have z1 = θ(z1). Now substituting θ(z) = yz1 into Eq. (2) gives z1y
2 = y2z1, and hence, ρ(z1) = ρ(y), which means

ρ(y) = ρ(z).

If |y| < 1
2
|z|, then z1 ∈ Pref(yz)means y ∈ Pref(z1) so that let z1 = yz2 for some z2. We can easily see that z2 ∈ Pref(z).

In addition, z2 ∈ Suff(z1) ⊆ Suff(θ(z)) holds, and hence, θ(z2) ∈ Pref(z). As a result, z2 = θ(z2). Hence, θ(z) = y2z2 and

this derives z2y
3 = y3z2 from Eq. (2). The commutativity implies ρ(z2) = ρ(y), which means ρ(y) = ρ(z). �

3. Overlaps between θ-primitive words

As mentioned in Proposition 1, a primitive word v cannot occur nontrivially inside v2. Thus, two expressions vi and vj ,

with i, j � 1, cannot overlap nontrivially on a sequence longer than |v|. A natural question is whether we can have some

nontrivial overlaps between two expressions α(v, θ(v)), β(v, θ(v)) ∈ {v, θ(v)}+ when v ∈ �+ is a θ-primitive word. In

this section, we completely characterize all such nontrivial overlaps, and, moreover, in each case we also give the set of all

solutions of the corresponding equation.

We begin our analysis by giving two lemmas and a proposition of use.

Lemma 9 ([7]). Let v ∈ �+ be a θ-primitive word. Then, θ(v)vx = yvθ(v) for some words x, y ∈ �∗ with |x|, |y| < |v|, if
and only if v = θ(v) and x = y = λ. Similarly, vθ(v)v = xv2y for some x, y ∈ �∗ if and only if v = θ(v) and either x = λ or

y = λ.

Lemma 10. Let v be a θ-primitive word and let v1, v2 ∈ {v, θ(v)}. For nonempty words x, y with |x| = |y| < |v|, the equation
vθ(v)x = yv1v2 implies v1 = v.

Proof. If v1 = θ(v), then, in light of Proposition 1 and Lemma 9, v2 can be neither v nor θ(v). �

Proposition 11. Let v ∈ �+ be a θ-primitive word. Neither vθ(v) nor θ(v)v can be a proper factor of any word in {v, θ(v)}3.
Proof. Let v1, v2, v3 ∈ {v, θ(v)}, and let v1v2v3 = xvθ(v)y for some x, y ∈ �+. If we apply Lemma 10 to the overlap

between v1v2 and vθ(v), then we obtain that v2 = θ(v). If we do so to the overlap between v2v3 and vθ(v), then v2 = v.

Thus, v = θ(v) must hold, but then v2 would be a proper factor of v3. However, this contradicts the assumption that v is

primitive and thus also θ-primitive. �

Next, we provide two intermediate results on the nontrivial overlaps between α(v, θ(v)) and β(v, θ(v)) of the form

α(v, θ(v)) · x = y · β(v, θ(v)).

Theorem 12. Let v ∈ �+ be a θ-primitive word, m � 1, and v1, v2, . . . , vm ∈ {v, θ(v)}. For β(v, θ(v)) ∈ {v, θ(v)}m, if
v1v2 · · · vmx = yβ(v, θ(v)) for some x, y with 0 < |x| = |y| < |v|, then there do not exist two indices 1 � i, j < m such that

vi = vi+1 = v and vj = vj+1 = θ(v).

Proof. Suppose that such indices i, j existed. Note thatm has to be at least 2 if v = θ(v), or has to be at least 4 if v �= θ(v).
If v = θ(v), thenwe have vmx = yvm withm � 2, but this obviously contradicts Proposition 1 due to 0 < |x| = |y| < |v|

and the primitivity of v.

Let us consider the other case v �= θ(v). As mentioned above,m � 4 in this case. Since θ is an involution, we can assume

that i � j. This implies the existence of an index 2 � k � m − 2 such that vkvk+1 = vθ(v). However, if so, then v could not

be θ-primitive in light of Proposition 11 because vkvk+1 is a proper factor of β . �
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Table 1

Characterization of possible proper overlaps of the form α(v, θ(v)) · x = y · β(v, θ(v)). For the second and third

equations, p and q are nonempty words. For the last three equations, i � 0, j � 1, r, t ∈ �+ such that r = θ(r),

t = θ(t), and rt is primitive. Note that the 4th and 5th equations are the same up to the antimorphic involution θ .

Equation Solution

vkx = yθ(v)k, k � 1 v = yp, x = θ(y), p = θ(p),
and whenever k � 2, y = θ(y)

vx = yv v = (pq)i+1p, x = qp, y = pq, with i � 0

vθ(v)x = yvθ(v), v = (pq)i+1p, x = θ(pq), y = pq, with i � 0, qp = θ(qp)

vk+1x = yθ(v)kv, k � 1 v = r(tr)i+jr(tr)i , x = (tr)jr(tr)i , y = r(tr)i+j

vθ(v)kx = yvk+1, k � 1 v = (rt)ir(rt)j+ir, y = (rt)ir(rt)j , x = (rt)j+ir

vθ(v)kx = yvkθ(v), k � 2 v = (rt)ir(rt)j+ir, y = (rt)ir(rt)j , x = (tr)jr(tr)i

Fig. 1. The case when α(v, θ(v)) = vk .

Theorem13. For a θ-primitiveword v ∈ �+, letα(v, θ(v)), β(v, θ(v)) ∈ {v, θ(v)}+ such thatα(v, θ(v)) ·x = y ·β(v, θ(v))
for some x, y ∈ �+ with |x|, |y| < |v|. Then, for any i � 1, neither vθ(v)iv nor θ(v)viθ(v) can occur either in α(v, θ(v)) or in
β(v, θ(v)).

Proof. Suppose that vθ(v)iv occurs in α(v, θ(v)) for some i � 1. We assumed that x, y ∈ �+ and |x|, |y| < |v| so

that the factor vθ(v)iv contains as a proper factor γ (v, θ(v)) ∈ {v, θ(v)}i+1, i.e., there exist some p, q ∈ �+ such that

vθ(v)iv = pγ (v, θ(v))q. Due to Lemma 9 and θ(v) being primitive, γ (v, θ(v)) = vi+1. Nowwe have vθ(v)iv = pvi+1q and

hence vθ(v)v = pv2q. However, this contradicts Lemma 9. The other cases can be proved similarly. �

Asan immediate consequenceof theprevious twotheorems, for agivenθ-primitivewordv, ifα(v, θ(v))·x = y·β(v, θ(v))

with x, y ∈ �+, |x|, |y| < |v|, then α(v, θ(v)) and β(v, θ(v)) can be only of the following types vk , vkθ(v), vθ(v)k , θ(v)k ,

θ(v)kv, or θ(v)vk for some k � 1. The next result refines this characterization further.

Theorem14. Let v ∈ �+ be a θ-primitiveword. Then, the only possible proper overlaps of the formα(v, θ(v))·x = y·β(v, θ(v))
with α(v, θ(v)), β(v, θ(v)) ∈ {v, θ(v)}+, x, y ∈ �+ and |x|, |y| < |v| are given in Table 1 (modulo a substitution of v by

θ(v)) together with the characterization of their sets of solutions.

Proof. Since θ is an involution, we can assume without loss of generality that α starts with v. Then the equation αx = yβ
enables us to let v = yv1 for some non-empty word v1 ∈ �+. Due to the previous observation we know that α ∈
{vk, vkθ(v), vθ(v)k | k � 1}.
Case 1. First we consider the case when α = vk for some k � 1. Since v is θ-primitive, vkx = yβ , and |y|, |x| < |v|,
the border between any two consecutive v’s falls inside a θ(v), see Fig. 1; otherwise v would occur inside v2 which would

contradict its primitivity. Thus, β ∈ {θ(v)k, θ(v)k−1v}.
The first subcase we investigate is when β = θ(v)k . Then, we immediately obtain v1 = θ(v1) and in addition, if k � 2,

then y = θ(y). Moreover, if we look at the end of the two sides of the equation vkx = yθ(v)k , we also obtain that x = θ(y).
Thus, a proper overlap of the form vkx = yθ(v)k with v being θ-primitive is possible, and,moreover, the set of all solutions of

this equation is characterized by the following formulas: v = yv1 and x = θ(y), where v1 = θ(v1) and y = θ(y) whenever

k � 2.

The second subcase is when β = θ(v)k−1v. If k = 1, then we have vx = yv, and this conjugacy equation is solved

as v = (pq)i+1p, x = qp, and y = pq for some words p, q and an integer i � 0. Note that both p and q must be non-

empty because q = λ implies v = pi+2, which contradicts the primitivity of v; the emptiness of p with i � 1 lead us

to the same contradiction. If p = λ and i = 0, then v = x = q and contradicts the length condition |x| < |v|. When

k � 2, substituting v = yv1 into vkx = yθ(v)k−1v results in yv1y(v1y)
k−2v1x = y(θ(v1)θ(y))θ(v)k−2v, which implies that

v1 = θ(v1), y = θ(y), and v = v1x. Now we have v = yv1 = v1x, and to this equation we can apply Lemma 7 to obtain the

characterization y = r(tr)i+j , v1 = r(tr)i, and x = (tr)jr(tr)i for some i � 0, j � 1, and two non-empty θ-palindromes r, t
such that rt is primitive. Based on this characterization, v = r(tr)i+jr(tr)i.
Case 2. Suppose now that α = vkθ(v) for some k � 1. If k � 2, then β has to start with θ(v)k−1 because otherwise it

would contradict the primitivity of v. This θ(v)k−1 has to be followed by v in light of Lemma 10. However, then, vθ(v)would

overlap with θ(v)v with the overlap properly longer than v. This contradicts Lemma 9.

Thus, k has to be 1. Lemma 10 implies that β is either v2 or vθ(v). Firstly, we consider the case when β = v2, that is,

we have vθ(v)x = yv2 (see Fig. 2 left). Note that for any x, y ∈ �+ with |x|, |y| < |v|, vθ(v)x = yv2 holds if and only
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Fig. 2. The equations: vθ(v)x = yv2 and vθ(v)x = yvθ(v).

Fig. 3. The case when α(v, θ(v)) = vθ(v)k and β(v, θ(v)) starts with v.

if vθ(v)kx = yvk+1 holds for any k � 1. Furthermore, the latter equation is the same as the equation vk+1x′ = y′θ(v)kv,
which was considered in Case 1, up to the antimorphic involution θ . Using the result obtained in Case 1, we have that the

set of all solutions of vθ(v)kx = yvk+1 is characterized by the formulae v = (rt)ir(rt)j+ir, x = (rt)j+ir, and y = (rt)ir(rt)j .
The remaining case for α = vθ(v) is when β = vθ(v), see Fig. 2 right. Then, we can write v = yv1 = v1v2 and we obtain

immediately x = θ(y) and v2 = θ(v2). Thus, a proper overlap of the form vθ(v)x = yvθ(v), with v being θ-primitive, is

possible. Furthermore, the set of all solutions of this equation is characterized by the following formulas: v = (pq)i+1p,

y = pq, x = θ(pq) for some i � 0 and p, q ∈ �∗ such that qp = θ(qp). We can easily check that p, q have to be non-empty

as done previously.

Case 3. Finally we consider the case when α = vθ(v)k for some k � 2; the case when k = 1 was already considered in

Case 2. Since θ(v) is primitive, the border between any two θ(v)’s falls inside v. According to Lemma 10, β has to begin with

v, ormore strongly,β ∈ vk{v, θ(v)}, see Fig. 3. Since the equation vθ(v)kx = yvk+1 has been already characterized in Case 2,

it suffices to consider the case when β = vkθ(v), that is, we have the equation vθ(v)kx = yvkθ(v). This equation implies

that we can let v = v1v2 for some non-emptyword v2 ∈ �+ as illustrated in Fig. 3. By substituting v = yv1 = v1v2 into this

equation, we can easily obtain v1 = θ(v1), v2 = θ(v2), and x = θ(y). Now Lemma 7 is applicable to θ(v) = v2v1 = v1θ(y)
and result in the characterization that x = θ(y) = (tr)j(rt)ir, v1 = (rt)ir, and v2 = (rt)i+jr for some i � 0, j � 1, and two

nonempty θ-palindromes r, t such that rt is primitive. �

4. An extension of Lyndon and Schützenberger’s result

As an application of the obtained characterization of non-trivial overlaps, now we consider the extended Lyndon–

Schützenberger equation. Let us recall first the original result by Lyndon and Schützenberger [15].

Theorem 15. If words u, v,w satisfy the relation u� = vnwm for some positive integers �, n,m � 2, then they are all powers of

a common word, i.e., there exists a word t such that u, v,w ∈ {t}∗.
Let us extend the equation as follows: for u, v,w ∈ �+ and �, n,m � 2,

u1 · · · u� = v1 · · · vnw1 · · ·wm, (3)

where u1, . . . , u� ∈ {u, θ(u)}, v1, . . . , vn ∈ {v, θ(v)}, and w1, . . . ,wm ∈ {w, θ(w)}. We call Eq. (3) the extended Lyndon–

Schützenberger equation (abbreviated as exLS equation).

In light of Theorem 15, we ask the question of under what conditions on �, n,m, the exLS equation implies that u, v,w ∈
{t, θ(t)}+ for someword t ∈ �+. If such t exists, we say that the triple (�, n,m) imposes θ-periodicity on u, v,w, (or shortly,

imposes θ-periodicity). Furthermore, we say that the triple (�, n,m) imposes θ-periodicity if it imposes θ-periodicity on all

u, v,w. Note that, if (�, n,m) imposes θ-periodicity, then so does (�,m, n), and vice versa. Indeed, assume that u1 · · · u� =
v1 · · · vmw1 · · ·wn holds. Applying θ to both of its sides, we obtain θ(u�) · · · θ(u1) = θ(wn) · · · θ(w1)θ(vm) · · · θ(v1), and
if (�, n,m) is assumed to impose θ-periodicity, then this equation gives u, v,w ∈ {t, θ(t)}+ for some t ∈ �+. Note also

that the fact that a certain triple (�, n,m) imposes θ-periodicity does not imply that (�′, n′,m′) imposes θ-periodicity for

�′ > � or n′ > n or m′ > m.

The results of this section are summarized in Table 2. Overall, combining all the results from this section we obtain that

� � 5, n � 3,m � 3 imposes θ-periodicity on u, v, andw (Theorem 27). In contrast, for � � 3, once either n = 2 orm = 2,

(�, n,m) does not always impose θ-periodicity, see Examples 1 and 2. Therefore, when � � 5, (�, 3, 3) is the optimal bound.

In the case when � = 2, � = 3, or � = 4, the problem of finding optimal bounds is still open.

Example 1. Let � = {a, b} and θ : �∗ → �∗ be the mirror image defined as θ(a) = a, θ(b) = b, and θ(w1 . . .wn) =
wn . . .w1, where wi ∈ {a, b} for all 1 � i � n. Take now u = akb2a2k , v = θ(u)la2kb2 = (a2kb2ak)la2kb2, and w = a2, for
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Table 2

Result summary for the extended Lyndon–Schützenberger equation. As mentioned in the main text, if

(�, n,m) imposesθ-periodicity, then sodoes (�,m, n). Hence, Theorems25and26prove that (5, � 4, 4)

and (5, � 3, 3) also impose θ-periodicity, respectively.

� n m θ-periodicity

� 6 � 3 � 3 Yes Theorem 16

5 � 5 � 5 Yes Theorem 17

5 4 � 4 Yes Theorem 25

5 3 � 3 Yes Theorem 26

� 3 2 � 1 No Examples 1 and 2

some k, l � 1. Then, although θ(u)l+1ul+1 = v2wk , there is no word t ∈ �+ with u, v,w ∈ {t, θ(t)}+, i.e., for any k, l � 1,

the triple of numerical parameters (2l + 2, 2, k) is not enough to impose θ-periodicity.

Example 2. Consider again � = {a, b} and θ : �∗ → �∗ be the mirror image defined in the previous example and take

u = b2(aba)k , v = ulb = (b2(aba)k)lb, and w = aba for some k, l � 1. Then, although u2l+1 = vθ(v)wk , there is no word

t ∈ �+ with u, v,w ∈ {t, θ(t)}+, i.e., for any k, l � 1, (2l + 1, 2, k) is not enough to impose θ-periodicity.

In the rest of this section, we handle the cases when (�, n,m) imposes θ-periodicity. Among them, we firstly consider

some caseswhere enough amount of repetition is available for us to apply the extended Fine andWilf’s theorem (Theorem2).

The next two results analyze the cases when we have triples (�, n,m) with � � 6 and n,m � 3 and, respectively (5, n,m)
with n,m � 5.

Theorem 16. Let u, v,w ∈ �+, n,m � 3, � � 6, ui ∈ {u, θ(u)} for 1 � i � �, vj ∈ {v, θ(v)} for 1 � j � n, and wk ∈
{w, θ(w)} for 1 � k � m. If u1 . . . u� = v1 . . . vn w1 . . .wm, then there exists a word t ∈ �+ such that u, v,w ∈ {t, θ(t)}+.

Proof. Let us suppose that |v1 . . . vn| � |w1 . . .wm|; the other case is symmetric and can be solved similarly. Then,

|v1 . . . vn| � 1
2
|u1 . . . ul| � 3|u|, since � � 6. Since n � 3, this means that u1 . . . u� and v1 . . . vn share a common

prefix of length larger than both 3|u| and 3|v|. Thus, we can apply Theorem 2 to obtain that u, v ∈ {t, θ(t)}+ for some

θ-primitive word t ∈ �+. Moreover, since u1 . . . u� = v1 . . . vn w1 . . .wm, this implies w1 . . .wm ∈ {t, θ(t)}∗. Since t is

θ-primitive, Theorem 3 implies that also w ∈ {t, θ(t)}+. �

This proof clarifies one important point: in order to prove that (�, n,m) imposes θ-periodicity, it suffices to prove that

two of u, v,w are in {t, θ(t)}+ for some t.

Theorem 17. Let u, v,w ∈ �+, n,m � 5, ui ∈ {u, θ(u)} for 1 � i � 5, vj ∈ {v, θ(v)} for 1 � j � n, and wk ∈ {w, θ(w)}
for 1 � k � m. If u1u2u3u4u5 = v1 . . . vn w1 . . .wm, then there exists a word t ∈ �+ such that u, v,w ∈ {t, θ(t)}+.

Proof. Since u1u2u3u4u5 = v1 . . . vn w1 . . .wm and n,m � 5, we immediately obtain that |u| > |v| and |u| > |w|. Assume

now that n|v| � m|w|; the other case is symmetric. Thus, n|v| � 2|u|+ 1
2
|u| and we take n|v| = 2|u|+ l for some l � 1

2
|u|.

We claim now that l � |v|. If l � |u|, then we are done since we already know that |u| > |v|. So, let 1
2
|u| � l < |u|.

If n � 6, then n|v| = 2|u| + l < 3|u| and thus |v| < 1
2
|u| � l. Thus, the only case remaining now is when n = 5. Then,

5|v| = 2|u| + l � 2|u| + 1
2
|u|, which implies |v| � 1

2
|u|. But then we have that 4|v| � 2|u| while 5|v| = 2|u| + l. Hence,

also in this case we obtain |v| � l.

Thus, u1u2u3u4u5 and v1 . . . vn have a common prefix of length n|v| = 2|u|+ l � 2|u|+ |v|. This means, due to Theorem

2, that there exists a θ-primitive word t ∈ �+ such that u, v ∈ {t, θ(t)}+. As mentioned previously, now we can also say

that w ∈ {t, θ(t)}+. �

The triple (5, n,m) also turns out to impose θ-periodicity for any n � 4 and m � 7.

Theorem18. Let u, v,w ∈ �+, n � 4,m � 7, ui ∈ {u, θ(u)} for1 � i � 5, vj ∈ {v, θ(v)} for1 � j � n, andwk ∈ {w, θ(w)}
for 1 � k � m. If u1u2u3u4u5 = v1 . . . vn w1 . . .wm, then there exists a word t ∈ �+ such that u, v,w ∈ {t, θ(t)}+.

Proof. Unless the border between vn and w1 falls inside u3, Theorem 2 concludes the existence of such t. So, assume that

the border falls inside u3. Even under this assumption, if the border between u2 and u3 falls inside some vi except vn, then

Theorem 2 leads us to the same conclusion. Otherwise, we have that (n − 1)|v| < 2|u|, which means |v| < 2
n−1

|u| � 2
3
|u|.

Similarly, if the border betweenu3 andu4 does not fall insidew1,we reach the existence of such t; otherwise |w| < 2
m−1

|u| �
1
3
|u|. Under the condition that vn and w1 straddle these respective borders, the equation cannot hold because v and w are

too short. �
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Fig. 4. The basic problem setting of Proposition 20.

We already know from Example 2 that for any m � 1, the triple (5, 2,m) is not enough to impose θ-periodicity. So, we

investigate next what would be the optimal bound for the extension of the Lyndon and Schützenberger result when the

first parameter is 5. Note that, without loss of generality, we can assume n � m. Then, due to Theorem 17, all we have to

investigate are the cases (5, 3,m) for m � 3 and (5, 4,m) for m � 4. The next intermediate lemma will be useful in the

analysis of these cases.

Lemma 19. Let u ∈ �+ such that u = xy and y ∈ Pref(u) for some θ-palindrome words x, y ∈ �+. If |y| � |x|, then
ρ(x) = ρ(y) = ρ(u).

Proof. We have u = xy = yz for some z ∈ �+ of the same length as x. The length condition implies that x ∈ Pref(y). Since
x = θ(x) and y = θ(y), this means that x ∈ Suff(y) and hence z = x. So we have u = xy = yx, and hence x, y, and u share

their primitive root. �

Unlike in the case of the original Lyndon–Schützenberger equation, the investigation of our extension entails the consid-

eration of an enormous amount of cases since for each variable ui, vj ,wk we have two possible values. However, in almost all

cases, it is enough to consider the common prefix between u1 . . . u� and v1 . . . vn or the common suffix between u1 . . . u�

and w1 . . .wm to prove that either the equation imposes θ-periodicity or the equation cannot hold.

Note that for the (5, 3,m) or (5, 4,m) extensions of the Lyndon–Schützenberger equation, we only have to consider the

case when the border between vn and w1 is inside u3 because otherwise Theorem 2 immediately implies that u, v,w ∈
{t, θ(t)}+ for some word t ∈ �+. In addition, even if the border is inside u3, as long as m|w| � 2|u| + |w|, we reach the

same conclusion. Moreover, we can assume that w is θ-primitive since otherwise we would just increase the value of the

parameter m. These observations justify the assumptions which will be made in the following propositions.

Proposition 20. Let u, v ∈ �+ such that v is a θ-primitive word, u1, u2, u3 ∈ {u, θ(u)}, and v1, . . . , v2m+1 ∈ {v, θ(v)} for
somem � 1. If v1 . . . v2m+1 is a proper prefix of u1u2u3 and 2m|v| < 2|u| < (2m+1)|v|, then u2 �= u1 and v1 = · · · = v2m+1.

Moreover, v1 = zθ(z)p and u1u2 = (zθ(z)p)2mzθ(z) for some non-empty word z and non-empty θ-palindrome p.

Proof. Since θ is an involution, we may assume without loss of generality that u1 = u and v1 = v. Note that |v| < |u| and,
due to the length condition, the border between u1 and u2 falls inside vm+1 while the one between u2 and u3 falls inside

v2m+1. Hence, we let

u1 = v1 · · · vmz (4)

u2 = yvm+2 · · · v2mx (5)

for some non-empty words w, x, y, z ∈ �+ such that vm+1 = zy, v2m+1 = xw, and w ∈ Pref(u3). As such,

u1u2 = v1v2 · · · v2mx. (6)

These are illustrated in Fig. 4. Due to the assumption2|u| < (2m+1)|v| andEq. (4),wehave2|z| = 2|u|−2m|v| = |x| < |v|,
i.e., |y| = |v| − |z| > |z|. Now, we have two cases depending on whether u2 is equal to u1.

Case 1. Let us consider the case when u2 �= u1, i.e., u2 = θ(u), first. In this case, u1u2 is the θ-palindrome uθ(u), and hence,

Eq. (6) implies

uθ(u) = v1v2 · · · v2m−1v2mx = θ(x)θ(v2m) · · · θ(v2)θ(v1). (7)

Applying Theorem 14 to this equation leaves two subcases to be considered: (a) v1 = · · · = v2m = v, and (b) v1 = v, v2 =
· · · = v2m = θ(v).

By catenating w to the right of both sides of Eq. (7), we can easily observe that vsv2mv2m+1 = θ(v2)θ(v1)w for some

vs ∈ Suff(v2m−1). Substituting the values of v1, . . . , v2m being specified as (b) into this equation results in vsθ(v)v2m+1 =
vθ(v)w. Lemma 10, however, denies that this equation holds so that the subcase (b) is impossible. It is worth noting, in

passing, that this impossibility of (b) does not rely on the parity of the index of vk on which the border between u2 and u3
lies (in our current proof, k is assumed to be odd). This fact will free us from repeating the argument of this paragraph in the

context of k being even, which will be the case in Proposition 21.

Letusconsider (a)next.ApplyingTheorem14toEq. (7)providesuswith thecharacterizationx = θ(x)andv = xp for some

θ-palindrome p. In turn, by replacing Eq. (6) with v = xp and Eq. (4), we can obtain uθ(u) = (xp)2mx = vmzθ(z)θ(v)m, from
which x = zθ(z).We claim that v2m+1 must be v. To verify this claim, suppose v2m+1 = θ(v), andwewill prove thatu3 canbe
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neither u nor θ(u). If u3 = u, then v1 · · · v2mv2m+1 ∈ Pref(u1u2u3) implies v1 · · · v2mv2m+1 ∈ Pref(θ(x)θ(v2m) · · · θ(v1)v)
becauseofv ∈ Pref(u)andEq. (7). This prefix relationmeans that v2mv2m+1 = vθ(v)overlapswithθ(v1)v1 = θ(v)v in away

contradicting Lemma 10. For the case u3 = θ(u), note that θ(v) = px = pzθ(z) and recall that x = zθ(z) ∈ Pref(v2m+1).
If |zθ(z)| � |p|, then Lemma 19 implies that ρ(zθ(z)) = ρ(p), which contradicts the primitivity of v. To consider the case

|zθ(z)| < |p|, we need the fact that u = vmz, i.e., θ(u) = θ(z)(pzθ(z))m. The fact that v2m+1 is a prefix of xu3 = zθ(z)θ(u)
can be rewritten as pzθ(z) ∈ Pref(zθ(z)θ(z)p). In fact, now we have pzθ(z)2 = zθ(z)2p because this prefix condition and

|zθ(z)| < |p| imply θ(z) ∈ Suff(p). This commutativity brings ρ(p) = ρ(zθ(z)2), and hence, p, z ∈ {t, θ(t)}+ for some

word t. However, this contradicts the θ-primitivity of v.

In conclusion, ifu1 �= u2, then v1 = · · · = v2m+1 must hold. Furthermore, v1 = v = zθ(z)p andu1u2 = (zθ(z)p)2mzθ(z).
Case 2. Here we consider the other case u2 = u1 = u, and will see that we cannot avoid a contradiction, that is, the

assumption u2 = u1 = u is invalid. In this case, replacing the formulas given by Eqs. (4) and (5) within the equation u1 = u2
gives

v1 · · · vmz = yvm+2 · · · v2mx, (8)

and hence, we can let v1 = v = yz′ for some z′ ∈ Pref(vm+2). By catenatingw to the right of both sides of Eq. (8), we obtain

v1 · · · vmzw = yvm+2 · · · v2mv2m+1. (9)

Moreover, by catenating z to the left of both sides of this equation, we obtain

zv1 · · · vmzw = vm+1vm+2 · · · v2mv2m+1. (10)

This means that v1 · · · vm is a proper factor of vm+1vm+2 · · · v2mv2m+1. Thus, v1 = · · · = vm = v must hold due to

Proposition 11, and hence, vm+2 = · · · = v2m = θ(v) must hold due to Proposition 1. Recall that |x| = 2|z|; hence
substituting vm = v = yz′ into Eq. (8) gives x = z′z. Furthermore, vm+1v2m+1 �= v2; indeed, otherwise, Eq. (10) implies

zvzw = v2 (if m = 1) or zvmzw = vθ(v)m−1v (if m � 2), and hence, zv2w = vθ(v)v. The first contradictions Proposition 1

and the latter contradicts Lemma 9.

To begin, we consider the case when vm+1 = v. As just mentioned, in this case, v2m+1 must be θ(v). Then, substituting
v = yz′ into Eq. (10) gives z′ = θ(z′), and if further m � 2, then y = θ(y). Hence, if m � 2, then these θ-palindromic

properties,with v = zy = yz′ and |y| > |z′|, imply thatρ(y) = ρ(z′) in light of Lemma19,which contradicts the primitivity

of v. If m = 1, then we have v1 = v, v2 = vm+1 = v, and v3 = v2m+1 = θ(v). Combining v = yz′, y ∈ Suff(vm+1), and|y| > |z′| together, we have z′ ∈ Suff(y). This means that z′2 ∈ Suff(v), and hence, z′2 ∈ Pref(v2m+1), which is actually

equal to x because x ∈ Pref(v2m+1) and |x| = 2|z′|. Now Eq. (6) becomes u2 = v2z′2, which implies u, v, z′ ∈ {t}∗ for some

word t ∈ �+ due to Theorem 15. However, this contradicts the primitivity of v because |v| > |z′|.
Next, we consider the case when vm+1 = θ(v); i.e., v1 = · · · = vm = v and vm+1 = · · · = v2m = θ(v). Since

we have let vm+1 = zy, in this case we have θ(v) = zy, and this implies with v = yz′ that y = θ(y) and z′ = θ(z).
Thus, x = θ(z)z = z′θ(z′). Moreover, if either m � 2 or v2m+1 = θ(v), then z′ = θ(z′), and hence z = θ(z′) is also a

θ-palindrome. At any rate, we have to consider the following three subcases depending on the values of u3 and v2m+1.

The first subcase is when u3 = u; then u1u2 = u2u3. From v1 · · · vmvm+1 ∈ Pref(u1u2) and yv2m+2 · · · v2mv2m+1 ∈
Pref(u2u3), we have

yθ(v)m−1v2m+1 ∈ Pref(vmθ(v)). (11)

Due to Lemma 10, v2m+1 has to be θ(v). So, substituting v = yz′ into Eq. (11) gives z′ = θ(z′) and y ∈ Pref(z′y). From these

and |y| > |z′|, ρ(y) = ρ(z′) follows due to Lemma 19, but this contradicts the primitivity of v.

The second subcase is when u3 = θ(u) and v2m+1 = v. In this case, using x = θ(z)z, we have v = yθ(z) = θ(z)zw.

Since |y| > |z|, this means that θ(z) ∈ Pref(y), i.e., z ∈ Suff(y). Note that x = θ(z)z ∈ Suff(u2) so that when u3 = θ(u),
θ(z)z ∈ Pref(u3), and by definition w ∈ Pref(u3). Hence, if |w| � 2|z|, then w ∈ Pref(θ(z)z), which implies w ∈ Pref(y)
because yθ(z) = θ(z)zw and |w| = |y| − |z|. Thus, y = wz, and hence, we have v = wzθ(z) = θ(z)zw. Since zθ(z) and

θ(z)z are θ-palindromes, Lemma6 implies thatw, zθ(z) ∈ {t, θ(t)}+, which contradicts the θ-primitivity of v. If |w| > 2|z|,
then θ(z)z,w ∈ Pref(u3) enables us to let w = θ(z)zw′ for some w′ ∈ �+. Since w ∈ Pref(u3), θ(w′)θ(z)z ∈ Suff(u2) =
Suff(yvm+2 · · · v2mθ(z)z). From this we can observe that θ(w′) ∈ Suff(v2m), that is, w′ ∈ Pref(v). Actually, this means

that w′ ∈ Pref(y) because |w′| = |w| − 2|z| = |y| − 3|z|. Due to this length condition and v = yθ(z) = (θ(z)z)2w′,
θ(z)zθ(z) ∈ Pref(y), that is, zθ(z)z ∈ Suff(y). Now we have y = w′zθ(z)z so that v = w′(zθ(z))2 = (θ(z)z)2w′, but this
causes a contradiction using Lemma 6 as done for the case |w| � 2|z|.

The last subcase is when u3 = θ(u) and v2m+1 = θ(v). As mentioned previously, in this case z = θ(z) = z′ = θ(z′).
Hence, we have v = yz = z2w. Recall that w ∈ Pref(u3) and u3 = θ(u) = z(zy)m. Thus, yz ∈ Pref(z2z(zy)m). Applying
Theorem 4 in [7] to this prefix relation gives ρ(z) = ρ(y), but this contradicts the primitivity of v. �

Proposition 21. Let u, v ∈ �+ such that v is θ-primitive, u1, u2, u3 ∈ {u, θ(u)}, and v1, . . . , v2m ∈ {v, θ(v)} for somem � 2.

If v1 · · · v2m ∈ Pref(u1u2u3) and (2m − 1)|v| < 2|u| < 2m|v|, then one of the following two statements is true:
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Fig. 5. When u3 = θ(u), v2m = θ(v) = xy overlaps with yθ(z)v because θ(z)v ∈ Pref(θ(u)).

Fig. 6. If u2 = u, we can regard that v1 . . . vm overlaps with vm . . . v2m−1 not depending on the value of u3.

1. u1 �= u2 and v1 = · · · = v2m, with v1 = xzθ(z) and u1u2 = (xzθ(z))2m−1x for some x, z ∈ �+ such that x = θ(x),

2. u1 = u2, v1 = · · · = vm, and vm+1 = · · · = v2m = θ(v1), with u1 = [r(tr)i(rt)i+jr]m−1r(tr)i(rt)j and v1 =
r(tr)i(rt)i+jr for some i � 0, j � 1, and r, t ∈ �∗ such that r = θ(r), t = θ(t), and rt is primitive.

Proof. Just as in the proof of Proposition 20, we can assume without loss of generality that u1 = u and v1 = v. Then, we

analyze two cases depending on whether u2 = u1.

Case 1. Let us first look at the case when u2 �= u1, i.e., u2 = θ(u). Eq. (7) with 2m being replaced by 2m − 1, i.e.,

uθ(u) = v1v2 · · · v2m−1x = θ(x)θ(v2m−1) · · · θ(v2)θ(v1) (12)

holds for some x ∈ Pref(v2m) so that we have 2 subcases (a) v1 = · · · = v2m−1 = v and (b) v1 = v, v2 = · · · = v2m−1 =
θ(v). As remarked in Case 1 of the proof of Proposition 20, (b) cannot hold. Moreover, the proof of Proposition 20 showed

that under the condition of subcase (a), if u3 = u, then v2m has to be v. Hence, it suffices to prove that v2m = v under the

condition of (a) with u3 = θ(u). Recall that in this case we have x = θ(x) and v = xy for some nonempty θ-palindrome y.

Due to Eq. (12), |u| = (m − 1)|v| + |x| + 1
2
|y|, and this means that the θ-palindrome y must be of even length; so one can

let y = zθ(z) for some z ∈ �+. Hence, u = (xy)m−1xz. From this θ(z)x ∈ Pref(u3) and combining this with Eq. (12) gives

v2m ∈ Pref(xθ(z)xy). (13)

Let us suppose for now that v2m = θ(v) (see Fig. 5). Since x was defined to be a prefix of v2m, we have x ∈ Pref(θ(v)), and
note that θ(v) = yx = zθ(z)x. If |x| � |y| = 2|z|, then Lemma19 implies thatρ(x) = ρ(y), which is a contradictionwith θ-
primitivity of v. If |z| � |x| < 2|z|, then Eq. (13), i.e., zθ(z)x ∈ Pref(xθ(z)xy), gives z ∈ Pref(x) and zθ(z)x ∈ Pref(xθ(z)x),
which imply zθ(z)x = xθ(z)z. However, this equation implies x, z ∈ {t, θ(t)}+ for some t ∈ �+ due to Lemma 6,

contradicting the θ-primitivity of v. If |y| < |z|, then we can apply Lemma 8 to zθ(z) ∈ Pref(xθ(z)xz), which is from

Eq. (13), to obtain ρ(x) = ρ(z), the same contradiction as above.

Consequently, if u1 �= u2, then we must have v1 = · · · = v2m = v. Substituting v = xzθ(z) into Eq. (12) gives us

u1 = u = (xzθ(z))m−1xz.

Case 2. Let us look next at the case when u2 = u1 = u, illustrated in Fig. 6 and let v = xy with x ∈ Suff(vm) and

y ∈ Pref(vm+1). Note that

ux = v1v2 · · · vm (14)

holds. Moreover, note that |x| < |y| since |x| = m|v| − |u| and (2m− 1)|v| < 2|u|. Now, if we look at the overlap between

v1 · · · vm and vm · · · v2m−1, then, due to Theorem 14, we get the following two subcases: (a) v1 = · · · = vm−1 = v and

vm = vm+1 = · · · = v2m−1 = θ(v); (b) v1 = · · · = vm = v, vm+1 = · · · = v2m−1 = θ(v).
First, let us consider the subcase (a). If u3 = u, then vm−1vm = vθ(v) overlaps with v2m−1v2m = θ(v)v2m and thus,

due to Theorem 14, v2m cannot be either v or θ(v). Otherwise, u3 = θ(u) and note that x = θ(x) and y = θ(y) since

vm = vm+1 = θ(v). Then, since the overlapped part between v2m−1 and vm is x, we obtain x ∈ Pref(θ(v)). Since θ(v) = yx

and |x| < |y|, we have x ∈ Pref(y), i.e., x ∈ Suff(y). By the way, Eq. (14) can be rewritten in this case as ux = (xy)m−1yx

so that y ∈ Suff(u). Due to the transitivity of suffix relation, x ∈ Suff(u), that is, x ∈ Pref(θ(u)). Since u3 = θ(u) and

vm = θ(v) = yx, we can say that vm−1vm overlaps with v2m−1v2m, which results in the same conclusion as above. Thus, the

subcase (a) is not possible.

For the subcase (b),weprove that v2m = θ(v). Let us start our analysis by supposing that v2m = v. First, since vm = v ends

with x, let v = zwx for some z,w ∈ �+ with |w| = |x|. If u3 = θ(u), since v2m = v = zwx, we obtain that w ∈ Pref(u3),
i.e., θ(w) ∈ Suff(u). But this means that w = θ(w), since the right end of the first u cuts vm = v = zwx after exactly |zw|
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characters. Since the overlap between v2m−1 and vm is x, we have xz = zw with x = θ(x) and w = θ(w). Then Lemma 6

implies that x, z,w ∈ {t, θ(t)}+ for some t ∈ �+, a contradiction with the θ-primitivity of v = zwx. If u3 = u, note that

v1 · · · vm = (xy)m ∈ Pref(xvm+1 · · · v2m−1v2m). Hence, y is a prefix of v2m = v. With |x| < |y| and v = xy, this prefix

relation would lead us to the same contradiction due to Lemma 19.

In conclusion, for this case, i.e., when u2 = u1, we obtain that v1 = · · · = vm = v and vm+1 = · · · = v2m = θ(v).
By applying Theorem 14 to the overlap between v1 . . . vm and vm . . . v2m−1, we get the representations of u and v by two

θ-palindromes r and t. �

From the presentations of u and v obtained in Propositions 20 and 21, the next corollary is obtained.

Corollary 22. Let u, v ∈ �+ such that v is θ-primitive, u1, u2, u3 ∈ {u, θ(u)}, and v1, . . . , vn ∈ {v, θ(v)} for some n � 3. If

v1 · · · vn = u1u2z for some z ∈ Pref(u3) and (n − 1)|v| < 2|u|, then z is a θ-palindrome.

These propositions show that if we suppose v to be θ-primitive, then the values of u1, u2, u4, and u5 determine the values

of v1, . . . , vn andw1, . . . ,wm uniquely,modulo a substitution of v by θ(v), or ofw by θ(w). Thus, they significantly decrease
the number of cases to be considered. Furthermore, the value of u3 may put an additional useful restriction on v or w.

Lemma 23. Let u, v ∈ �+ such that v is a θ-primitive word, u1, u2, u3 ∈ {u, θ(u)}, and v1, . . . , vn ∈ {v, θ(v)} for some

n � 3. If v1 · · · vn ∈ Pref(u1u2u3), u1 �= u2, u1 = u3, and (n − 1)|v| < 2|u| < n|v|, then |v| < 4
2n−1

|u|.
Proof. Without loss of generality, we can assume that u1 = u and v1 = v because θ is an involution. Due to Propositions 20

and 21, v1 = · · · = vn = v = xy for some θ-palindromes x, y and uθ(u) = vn−1x. Since vn ∈ Pref(uθ(u)u), this equation
implies that y ∈ Pref(u), but in fact this means that y ∈ Pref(v) because v ∈ Pref(u). Then Lemma 19 and the primitivity

of v imply that |y| < |x|, which is equivalent to |y| < 1
2
|v|. This means that |v| < 4

2n−1
|u| because |y| = n|v| − 2|u|. �

All we did so far in studying the extended Lyndon–Schützenberger equation u1 . . . u5 = v1 . . . vn w1 . . .wm was to

consider either the common prefix of v1 . . . vn and u1 . . . u5, or the common suffix of w1 . . .wm and u1 . . . u5. Next, we

combine them together and consider the whole equation. The following lemma proves to be useful for our considerations.

Lemma 24. Let u, v ∈ �+ such that v is a θ-primitive word, u1, u2, u3 ∈ {u, θ(u)} and v1, . . . , vn ∈ {v, θ(v)} for some

n � 3. If v1 · · · vn = u1u2z for some z ∈ Pref(u3), u1 = u2, and (n − 1)|v| < 2|u|, then v1 = xyx and z = x2 for some

x, y ∈ �+ such that x = θ(x) and yx = θ(yx).

Proof. Just as before, we assume that u1 = u and v1 = v. Propositions 20 and 21 imply that n = 2m for some m � 2,

u = {r(tr)i(rt)i+jr}m−1r(tr)i(rt)j , and v = r(tr)i(rt)i+jr for some r, t ∈ �∗ such that r = θ(r), t = θ(t), i � 0, and j � 1.

By taking x = r(tr)i and y = (rt)j , we complete the proof. �

Next, we prove that the triple (5, 4,m) imposes θ-periodicity for anym � 4.

Theorem 25. Let u, v,w ∈ �+, u1, u2, u3, u4, u5 ∈ {u, θ(u)}, v1, v2, v3, v4 ∈ {v, θ(v)}, and w1, . . . ,wm ∈ {w, θ(w)} for
some m � 4. If these words satisfy u1u2u3u4u5 = v1v2v3v4 w1 · · ·wm, then u is not θ-primitive and u, v,w ∈ {t, θ(t)}+ for

some t ∈ �+.

Proof. First note that we can assume thatw is θ-primitive, since otherwisewewould just increase the numerical parameter

m. If u is not θ-primitive, that is, u ∈ {p, θ(p)}k for some θ-primitive word p ∈ �+ and k � 2, then the equation can

be rewritten as p1p2 · · · p5k = v1v2v3v4w1 . . .wm, where pi ∈ {p, θ(p)} for 1 � i � 5k. But then, due to Theorem

16, we obtain that v,w ∈ {p, θ(p)}+. Furthermore, we can assume that also v is θ-primitive. Indeed, if it is not, then

v ∈ {q, θ(q)}j for some θ-primitive word q and j � 2. Then, the equation becomes u1 . . . u5 = q1 . . . q4jw1w2 . . .wm,

where qi ∈ {q, θ(q)} for 1 � i � 4j. But this implies that u,w ∈ {q, θ(q)}+ due to Theorem 18. Since u andw are assumed

to be θ-primitive, u,w ∈ {q, θ(q)} and we have 5|q| < 4j|q| + m|q|, which contradicts the fact that u, v, and w satisfy

the equation u1 . . . u5 = q1 . . . q4jw1w2 . . .wm. Even when v is θ-primitive, if m � 7 then the same argument leads to the

same contradiction.

Now we will show that if u, v, and w are θ-primitive, then the equation cannot hold for m � 6. Since θ is an involution,

we can assume that u1 = u, v1 = v, and w1 = w. Let us start by supposing that u, v, and w satisfy u1u2u3u4u5 =
v1v2v3v4 w1 · · ·wm. Now, we have several cases depending on where the border between v4 andw1 is located. If it is left to

or on theborder betweenu2 andu3, thenTheorem2 implies thatu,w ∈ {t, θ(t)}+ for some θ-primitiveword t ∈ �+, which

further implies that also v ∈ {t, θ(t)}+. In fact, u, v,w ∈ {t, θ(t)} because they are θ-primitive. Then |u1 . . . u5| = 5|t|,
while |v1v2v3v4w1 . . .wm| = (4 + m)|t| with m � 4, which is a contradiction. The case when the border between v4 and

w1 is right to or on the border between u3 and u4 will lead the contradiction along the same argument.

Let us suppose that |u1u2| < |v1v2v3v4| < |u1u2u3|. Note that under this supposition, |v|, |w| < |u|. If m|w| �
2|u| + |w| − 1, then u3u4u5 and w1 . . .wm share a suffix long enough to impose the θ-periodicity onto u and w due to
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Theorem 2. However, as explained before, this leads to a contradiction. This argument also applies to u1u2u3 and v1v2v3v4.

As a result, it is enough to consider the case when 3|v| < 2|u| < 4|v| and (m − 1)|w| < 2|u| < m|w|.
We start our case analysis with the case when u3 �= u5. Let

u1u2z = v1v2v3v4 (15)

for some z ∈ Pref(u3). This means

u3u4u5 = zw1 · · ·wm. (16)

Actually, z is aθ-palindromebecauseofCorollary22. From z ∈ Pref(u3),wecanobtain z ∈ Suff(u5)due to thisθ-palindromic

property of z and u3 �= u5. This means that eitherwm ∈ Suff(z) or z ∈ Suff(wm). In both cases, Eq. (16) implies that u3u4u5
and wmw1w2 · · ·wm share a common prefix of length at least 2|u| + |w| − 1, but then Theorem 2 would lead us to the

contradiction. This technique works also in the case when u1 �= u3 by changing the roles of v1 · · · v4 and w1 · · ·wm in the

above argument.

The cases to be investigated now are when u1 = u3 = u5. Note that |v| < 2
3
|u| because 3|v| < 2|u| < 4|v|. If u2 �= u1

or u4 �= u5, then Lemma 23 implies that |w| < 4
2m−1

|u|. Then 5|u| − (4|v| + m|w|) > 0 which contradicts the fact that

u, v, and w satisfy the given equation.

Let us close our analysis by considering the case when u1 = u2 = u3 = u4 = u5 = u. Applying Propositions 20 and 21,

we have thatm = 2k for some k � 2,w1 = · · · = wk = w,wk+1 = · · · = w2k = θ(w), v1 = v2 = v, and v3 = v4 = θ(v).

Then, Lemma 24 implies that u = xyxxy = (y′x′x′)k−1y′x′, v = xyx, and θ(w) = x′y′x′ for some x, y, x′, y′ ∈ �+ with

x = θ(x), yx = θ(yx), x′ = θ(x′), and x′y′ = θ(x′y′). Furthermore, u2x2 = v1v2v3v4 and x′2u2 = w1 · · ·wm so that

u = x2x′2. Note that k ∈ {2, 3} since 4 � m � 6.

When k = 2, i.e., xyxxy = y′x′x′y′x′, we have three subcases depending on the lengths of xy and y′x′. If |xy| < |y′x′|,
then by looking at the two sides of the equality xyxxy = y′x′x′y′x′, we obtain y′x′ = xyz = θ(z)xy and x = zx′θ(z) for some

z ∈ �+. Substituting x = zx′θ(z) into xyz = θ(z)xy we get z = θ(z), and hence, y′x′ = xyz = zxy. Thus, y′x′, xy, z ∈ p+
for some primitive word p. Let z = pi and y′x′ = pj for some i, j � 1. Then y′x′ = zxy and x = zx′z imply that pj = p2ix′piy.
Since p is primitive, p cannot be a proper factor of p2 so that this equation implies that x′ ∈ p+. However, this contradicts

the primitivity of θ(w) = x′y′x′. The case when |xy| > |y′x′| is symmetric to the previous case after reversing variables and

sides of the equation. Finally, if |xy| = |y′x′|, then x = x′, which is a contradiction with the primitivity of u since u = xxx′x′.
When k = 3, i.e., u = xyxxy = (y′x′x′)2y′x′, we first note that |xy| > |y′x′| and |xyx| > |y′x′x′|. If |xy| � |y′x′x′|,

then, by the Fine and Wilf theorem, ρ(xyx) = ρ(y′x′x′). Since xyx is strictly longer than y′x′x′, this means that v = xyx is

not primitive, which is a contradiction. Otherwise, i.e., |y′x′| < |xy| < |y′x′x′|, let xy = y′x′z for some z ∈ Pref(x′). Since
x′ = θ(x′), the equation xyxxy = (y′x′x′)2y′x′ also implies that xy = θ(z)y′x′. Moreover, since xy = y′x′z = θ(z)y′x′
and θ(z) ∈ Suff(x′), we obtain z = θ(z). Thus xy, y′x′, z ∈ {q}+ for some primitive word q ∈ �+, which, just as above,

contradicts the primitivity of θ(w).
In summary, we have proved the following:

1. the θ-primitivity of w can be assumed without loss of generality;

2. if either u or v is not θ-primitive, u1u2u3u4u5 = v1v2v3v4w1 · · ·wm implies u, v,w ∈ {t, θ(t)}+ for some t ∈ �+;

3. under the assumption that u, v,w be θ-primitive, if m � 7, then we reach the same conclusion as above;

4. under the same assumption, if m � 6, the equation cannot hold.

Therefore, we can conclude that if the equation holds, then u, v,w ∈ {t, θ(t)}+ for some t ∈ �+. �

The next result shows that the triple (5, 3,m) also imposes θ-periodicity for any m � 3.

Theorem 26. Let u, v,w ∈ �+, u1, u2, u3, u4, u5 ∈ {u, θ(u)}, v1, v2, v3 ∈ {v, θ(v)}, and w1, . . . ,wm ∈ {w, θ(w)} with

m � 3. If these words verify the equation u1u2u3u4u5 = v1v2v3 w1 · · ·wm, then u is not θ-primitive and u, v,w ∈ {t, θ(t)}+
for some t ∈ �+.

Proof. As in the proof of Theorem 25, we can assume that w is θ-primitive. Also if u is not θ-primitive, then, just as before,

Theorem 16 results in u, v,w ∈ {t, θ(t)}+ for some t ∈ �+. So let us assume that u is θ-primitive. Moreover, we can

assume that v is θ-primitive. Indeed, if it is not, then v ∈ {p, θ(p)}j for some θ-primitive word p and j � 2. Then the

equation becomes u1u2u3u4u5 = p1 . . . p3jw1w2 . . .wm, where pi ∈ {p, θ(p)} for 1 � i � 3j. For the case m � 5 and the

casem = 4, Theorems 17 and 25 lead us to the contradiction, respectively. Ifm = 3, we can change the roles of v andw, and

reduce it to the case when v is θ-primitive. In the following, we assume that u, v, and w are θ-primitive and prove that the

equation cannot hold.

Now, since θ is an involution, we can assume that u1 = u, v1 = v, andw1 = w. As in the proof of Theorem 25, in all cases

exceptwhen the border between v3 andw1 falls inside u3, we get a contradiction. Furthermore, using the same arguments as

in the previous proof, we can assume that 2|v| < 2|u| < 3|v| and (m− 1)|w| < 2|u| < m|w|. Moreover, due to Proposition
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Fig. 7. u1u2u3u4u5 = v1v2v3w1 · · ·wm for Theorem 26.

Fig. 8. The suffix of u3 can be written in two ways as y1y2y3 and z1z2.

Fig. 9. The suffix of u3 = θ(u) can be written in two ways as y1y2y3 and z1θ(z1).

20, u2 = θ(u) and v1 = v2 = v3 = v, see Fig. 7. Then uθ(u)x = v3 for some x ∈ �+, which satisfies x = θ(x) due to

Corollary 22. Since x ∈ Pref(u3), if u3 �= u5, then x ∈ Suff(u5) which implies that either wm ∈ Suff(x) or x ∈ Suff(wm). In
both cases,weobtain thatu3u4u5 andwmw1w2 · · ·wm share a commonsuffixof lengthat least 2|u|+|w|−1.Hence, Theorem

2 implies that u,w ∈ {t, θ(t)}+ for some t ∈ �+ and thus also v ∈ {t, θ(t)}+ which leads to the same contradiction as

above. Otherwise, u3 = u5 and we have the following four cases left:

1. uθ(u)uθ(u)u = vvvw1 · · ·wm,

2. uθ(u)θ(u)uθ(u) = vvvw1 · · ·wm,

3. uθ(u)uuu = vvvw1 · · ·wm,

4. uθ(u)θ(u)θ(u)θ(u) = vvvw1 · · ·wm.

Let us start by considering the first equation. Since v is θ-primitive, using Lemma 23, we have |v| < 4
5
|u| and |w| <

4
2m−1

|u|. However, then 5|u| − (3|v| + m|w|) > 5|u| − 12
5
|u| − 4m

2m−1
|u| = 6m−13

5(2m−1)
|u| > 0 becausem � 3. Hence, 5|u| >

3|v| + m|w| contradicting our supposition that the words u, v, and w satisfy the equation uθ(u)uθ(u)u = vvvw1 · · ·wm.

For the second equation, Propositions 20 and 21 imply that w1 = w2 = · · · = wm = w. Since uθ(u) = v2vp

for some vp ∈ Pref(v) and uθ(u) is a θ-palindrome, we have uθ(u) = θ(vp)θ(v)2. Note that θ(vp) ∈ Suff(θ(v)). Also

uθ(u) = wsw
m−1 for some ws ∈ Suff(w). Since m � 3, the Fine and Wilf theorem implies that ρ(θ(v)) = ρ(w) and thus

we obtain again the same contradiction as above.

Next we consider the third equation. Since u4 = u5, Propositions 20 and 21 imply that m = 2k for some k � 2

and w1 = · · · = wk = w and wk+1 = · · · = w2k = θ(w). Let wkθ(w)k = z1z2u
2 for some z1, z2 ∈ �+ with

|z1| = |z2| = k|w| − |u|, as illustrated in Fig. 8.

Then, z1z2 ∈ Suff(u), which due to length conditions means that z1 ∈ Suff(wk). Thus, θ(z1) ∈ Pref(θ(w)k) which

implies immediately that z2 = θ(z1). Similarly, we can let uθ(u)u = v3y1y2y3 for some y1, y2, y3 ∈ �+ with |y1| = |y2| =
|y3| = |u|−|v|. Then y1y2y3 = z1θ(z1), which implies y3 = θ(y1) and y2 = θ(y2). Recall that (2k−1)|w| < 2|u| < 2k|w|
was assumed. So we have |y1y2y3| < |w| and |w| < 2

2k−1
|u| � 2

3
|u|. Thus, |y1y2y3| < 2

3
|u|. This further implies that

|x| = |u| − |y1y2y3| > |y1|. If we look at the second v, since y3 ∈ Suff(u), using length arguments, we obtain that

y3 ∈ Pref(v), and hence y3 ∈ Pref(u). Since |y3| < |x|, this means that y3 ∈ Pref(x) and hence θ(y3) ∈ Suff(x), which

further implies θ(y3) ∈ Suff(v). Thus y2 = θ(y3) because y2 ∈ Suff(v), which results in y1 = y2 = y3 and, moreover, they

are all θ-palindromes. Hence y1y2 = θ(y2)θ(y1) = θ(y1y2), which is a prefix of θ(v). This means that uθ(u)u and v3θ(v)
share a prefix of length at least 2|u|+ |v|−1. Consequently ρθ (u) = ρθ (v)which leads to the same contradiction as before.

Lastly, we consider the fourth equation, illustrated in Fig. 9. Just as in the case of the third equation, y3 = θ(y1) and

y2 = θ(y2). Since y2y3 ∈ Suff(θ(u)), these equalities give θ(y3)θ(y2) = y1y2 ∈ Pref(u) ⊆ Pref(v2). Thus, we can see that

uθ(u)2 and v5 share their prefix of length at least 2|u| + |v|. The rest is as same as for the third equation.

In conclusion, if u is θ-primitive, then, using length arguments, we always reach a contradiction. On the other hand, if u

is not θ-primitive, then we proved that there exists a word t ∈ �+ such that u, v,w ∈ {t, θ(t)}+. �
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Combining Theorems 16, 17, 25, and 26 and Examples 1 and 2 all together, nowwe conclude our analysis on the extended

Lyndon–Schützenberger equation with the summarizing theorem.

Theorem 27. For u, v,w ∈ �+, let u1, . . . , u� ∈ {u, θ(u)}, v1, . . . , vn ∈ {v, θ(v)}, and w1, . . . ,wm ∈ {w, θ(w)}. If
u1 . . . u� = v1 . . . vn w1 . . .wm and � � 5, n,m � 3, then u, v,w ∈ {t, θ(t)}+ for some t ∈ �+. Furthermore, n = 3 and

m = 3 are optimal.

5. Conclusion

This paper continues the investigation of an extended notion of primitiveness of words, based on replacing the identity

between words by a weaker notion of “equivalence” between a word u and θ(u), where θ is a given antimorphic involution.

Firstly, we completely characterize all non-trivial overlaps between two words in {v, θ(v)}+ of the form α(v, θ(v)) · x =
y · β(v, θ(v)). As an application of this characterization, we extend the Lyndon–Schützenberger equation to the equation

u1 · · · u� = v1 · · · vnw1 · · ·wm, where u1, . . . , u� ∈ {u, θ(u)}, v1, . . . , vn ∈ {v, θ(v)}, and w1, . . . ,wm ∈ {w, θ(w)}. The
strongest result obtained states that for � � 5 and n,m � 3, u, v,w ∈ {t, θ(t)}+ for someword t, while once n orm become

2, the existence of such t is not guaranteed any more.
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