4 research outputs found

    Analysis of high-speed continuous casting with inverse finite elements

    Full text link
    A recently proposed inverse isotherm finite element method is further extended in order to account for processes with distorted isotherms. With this method a variety of problems can be solved which require the explicit calculation of characteristic material lines along with the common field of unknowns in transport phenomena. The method is applied to high-speed metal casting, where the location and shape of the extensive solidification front is calculated simultaneously with the primary unknowns, the velocity and the pressure, whereas the temperature is fixed at the moving nodes of the finite element tessellation. This is achieved by solving the energy equation inversely along with the rest of the conservation equations, i.e. the temperature field is fixed and its location is calculated. Empirical correlations may be derived which give the shape of the solidification front as a function of the process parameters. This may be used to improve the control means of metal casting, which is currently based on one-dimensional approximate analyses.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50204/1/1650131002_ftp.pd

    An inverse finite element method with an application to extrusion with solidification

    Full text link
    The flow and solidification of planar jets are analysed by means of an efficient inverse isotherm finite element method. The method is based on a tessellation that is constructed by isotherms as characteristic co-ordinate lines transverse to the flow direction. Thus opposite sides of finite elements lie on isotherms. The method allows the simultaneous determination of the location of the isotherms with the primary unknowns, namely, the velocity, the pressure, the temperature and the location of the free surface. Thus the determination of the location of the solidification front (which is known to pose significant computational difficulties) is automatic. This facilitates the control of the location of the solidification front by controlling macroscopic variables such as the flow rate, the cooling rate and the capillary design. The location of the solidification may then be suitably chosen to influence the frozen-in orientation and structure in extrusion of high-performance materials such as composites and polymers, in continuous casting of metals and in growth of crystals.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50200/1/1650090505_ftp.pd
    corecore