61 research outputs found

    Control interface concepts for CHARA 6-telescope fringe tracking with CHAMP+MIRC

    Get PDF
    Cophasing six telescopes from the CHARA array, the CHARA-Michigan Phasetracker (CHAMP) and Michigan Infrared Combiner (MIRC) are pushing the frontiers of infrared long-baseline interferometric imaging in key scientific areas such as star- and planet-formation. Here we review our concepts and recent improvements on the CHAMP and MIRC control interfaces, which establish the communication to the real-time data recording & fringe tracking code, provide essential performance diagnostics, and assist the observer in the alignment and flux optimization procedure. For fringe detection and tracking with MIRC, we have developed a novel matrix approach, which provides predictions for the fringe positions based on cross-fringe information.Comment: 6 pages, 4 figures, published in SPIE conference proceedings (http://dx.doi.org/10.1117/12.926559

    CHARA Michigan phase-tracker (CHAMP): a preliminary performance report

    Get PDF
    The CHARA Michigan Phase-tracker (CHAMP) is a real-time fringe tracker for the CHARA Array, a six-telescope long baseline optical interferometer on Mount Wilson, California. CHAMP has been optimized for tracking sensitivity at J, H, or K bands and is not meant as a science instrument itself. This ultimately results in maximum sensitivity for all the science beam combiners that benefit from stabilized fringes. CHAMP was designed, built, and tested in the laboratory at the University of Michigan and will be delivered to the CHARA Array in 2008. We present the final design of CHAMP, highlighting some its key characteristics, including a novel post-combination transport and imaging system. We also discuss testing and validation studies and present first closed-loop operation in the laboratory

    Last technology and results from the IOTA interferometer

    Get PDF
    The infrared optical telescope array (IOTA), one of the most productive interferometers in term of science and new technologies was decommissioned in summer 2006. We discuss the testing of a low-resolution spectrograph coupled with the IOTA-3T integrated-optics beam combiner and some of the scientific results obtained from this instrument

    Fundamental Stellar Properties from Optical Interferometry

    Get PDF
    High-resolution observations by visible and near-infrared interferometers of both single stars and binaries have made significant contributions to the foundations that underpin many aspects of our knowledge of stellar structure and evolution for cool stars. The CS16 splinter on this topic reviewed contributions of optical interferometry to date, examined highlights of current research, and identified areas for contributions with new observational constraints in the near future

    The Inner Disk of RY Tau: Evidence of Stellar Occultation by the Disk Atmosphere at the Sublimation Rim from K-band Continuum Interferometry

    Get PDF
    We present models of the inner region of the circumstellar disk of RY Tau that aim to explain our near-infrared (K-band: 2.1 μm) interferometric observations, while remaining consistent with the optical to near-infrared portions of the spectral energy distribution. Our submilliarcsecond-resolution CHARA Array observations are supplemented with shorter baseline, archival data from PTI, KI, and VLTI/GRAVITY and modeled using an axisymmetric Monte Carlo radiative transfer code. The K-band visibilities are well fit by models incorporating a central star illuminating a disk with an inner edge shaped by dust sublimation at 0.210 ± 0.005 au, assuming a viewing geometry adopted from millimeter interferometry (65° inclined with a disk major axis position angle of 23°). This sublimation radius is consistent with that expected of silicate grains with a maximum size of 0.36–0.40 μm contributing to the opacity, and is an order of magnitude further from the star than the theoretical magnetospheric truncation radius. The visibilities on the longest baselines probed by CHARA indicate that we lack a clear line of sight to the stellar photosphere. Instead, our analysis shows that the central star is occulted by the disk surface layers close to the sublimation rim. While we do not see direct evidence of temporal variability in our multiepoch CHARA observations, we suggest the aperiodic photometric variability of RY Tau is likely related temporal and/or azimuthal variations in the structure of the disk surface layers

    In the Shadow of the Transiting Disk: Imaging epsilon Aurigae in Eclipse

    Full text link
    Eclipses of the single-line spectroscopic binary star, epsilon Aurigae, provide an opportunity to study the poorly-defined companion. We used the MIRC beam combiner on the CHARA array to create interferometric images during eclipse ingress. Our results demonstrate that the eclipsing body is a dark disk that is opaque and tilted, and therefore exclude alternative models for the system. These data constrain the geometry and masses of the components, providing evidence that the F-star is not a massive supergiant star.Comment: As submitted to Nature. Published in Nature April 8, 2010

    The inner disk of RY Tau: evidence of stellar occultation by the disk atmosphere at the sublimation rim from K-band continuum interferometry

    Get PDF
    We present models of the inner region of the circumstellar disk of RY Tau which aim to explain our near-infrared (KK-band: 2.1μ2.1\,\mum) interferometric observations while remaining consistent with the optical to near-infrared portions of the spectral energy distribution. Our sub-milliarcsecond resolution CHARA Array observations are supplemented with shorter baseline, archival data from PTI, KI and VLTI/GRAVITY and modeled using an axisymmetric Monte Carlo radiative transfer code. The KK-band visibilities are well-fit by models incorporating a central star illuminating a disk with an inner edge shaped by dust sublimation at 0.210±0.0050.210\pm0.005\,au, assuming a viewing geometry adopted from millimeter interferometry (6565^{\circ} inclined with a disk major axis position angle of 2323^{\circ}). This sublimation radius is consistent with that expected of Silicate grains with a maximum size of 0.360.40μ0.36-0.40\,\mum contributing to the opacity and is an order of magnitude further from the star than the theoretical magnetospheric truncation radius. The visibilities on the longest baselines probed by CHARA indicate that we lack a clear line-of-sight to the stellar photosphere. Instead, our analysis shows that the central star is occulted by the disk surface layers close to the sublimation rim. While we do not see direct evidence of temporal variability in our multi-epoch CHARA observations, we suggest the aperiodic photometric variability of RY~Tau is likely related temporal and/or azimuthal variations in the structure of the disk surface layers.Comment: Accepted for publication in The Astrophysical Journa

    CHARA Michigan phase-tracker (CHAMP): a preliminary performance report

    Get PDF
    The CHARA Michigan Phase-tracker (CHAMP) is a real-time fringe tracker for the CHARA Array, a six-telescope long baseline optical interferometer on Mount Wilson, California. CHAMP has been optimized for tracking sensitivity at J, H, or K bands and is not meant as a science instrument itself. This ultimately results in maximum sensitivity for all the science beam combiners that benefit from stabilized fringes. CHAMP was designed, built, and tested in the laboratory at the University of Michigan and will be delivered to the CHARA Array in 2008. We present the final design of CHAMP, highlighting some its key characteristics, including a novel post-combination transport and imaging system. We also discuss testing and validation studies and present first closed-loop operation in the laboratory
    corecore