92 research outputs found

    A high performance liquid chromatographic assay of Mefloquine in saliva after a single oral dose in healthy adult Africans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mefloquine-artesunate is a formulation of artemisinin based combination therapy (ACT) recommended by the World Health Organization and historically the first ACT used clinically. The use of ACT demands constant monitoring of therapeutic efficacies and drug levels, in order to ensure that optimum drug exposure is achieved and detect reduced susceptibility to these drugs. Quantification of anti-malarial drugs in biological fluids other than blood would provide a more readily applicable method of therapeutic drug monitoring in developing endemic countries. Efforts in this study were devoted to the development of a simple, field applicable, non-invasive method for assay of mefloquine in saliva.</p> <p>Methods</p> <p>A high performance liquid chromatographic method with UV detection at 220 nm for assaying mefloquine in saliva was developed and validated by comparing mefloquine concentrations in saliva and plasma samples from four healthy volunteers who received single oral dose of mefloquine. Verapamil was used as internal standard. Chromatographic separation was achieved using a Hypersil ODS column.</p> <p>Results</p> <p>Extraction recoveries of mefloquine in plasma or saliva were 76-86% or 83-93% respectively. Limit of quantification of mefloquine was 20 ng/ml. Agreement between salivary and plasma mefloquine concentrations was satisfactory (r = 0.88, <it>p </it>< 0.001). Saliva:plasma concentrations ratio was 0.42.</p> <p>Conclusion</p> <p>Disposition of mefloquine in saliva paralleled that in plasma, making salivary quantification of mefloquine potentially useful in therapeutic drug monitoring.</p

    Pipamperone Population Pharmacokinetics Related to Effectiveness and Side Effects in Children and Adolescents

    Get PDF
    Background: Pipamperone is a frequently prescribed antipsychotic in children and adolescents in the Netherlands, Belgium, and Germany. However, pediatric pharmacokinetics and the relationship with side effects and efficacy are unknown. Currently, divergent pediatric dosing recommendations exist. Objectives: The objective of this study was to describe the population pharmacokinetics of pipamperone in children and adolescents; to correlate measured and predicted pipamperone trough concentrations and predicted 24-h area under the curves with effectiveness, extrapyramidal symptoms, and sedation; and to propose dose recommendations based on simulations. Methods: Pipamperone concentrations were collected from Dutch pediatric patients in a prospective naturalistic trial (n = 8), and German pediatric patients in a therapeutic drug monitoring service (n = 22). A total of 70 pipamperone concentrations were used to develop a population pharmacokinetic model with non-linear mixed-effects modeling (NONMEM®). Additionally, an additional random sample of 21 German patients with 33 pipamperone concentrations from the same therapeutic drug monitoring service was used for external validation. Pharmacokinetic parameters were related to clinical improvement, sedation, and extrapyramidal symptoms. Simulations were performed to determine optimal dosages. Results: In a one-compartment model, the apparent volume of distribution was 416 L/70 kg and the apparent clearance was 22.1 L/h/70 kg. Allometric scaling was used to correct for differences in bodyweight. The model was successfully externally validated. The median [25th–75th percentile] measured pipamperone trough concentrations were numerically higher in responders (98.0 µg/L [56.0–180.5 µg/L]) than in non-responders (58.0 µg/L [14.9–105.5 µg/L]), although non-significant (p = 0.14). A twice-daily 0.6-mg/kg dosage was better than a fixed dosage to attain the concentration range observed in responders. Conclusions: Our findings suggest that pipamperone therapeutic reference ranges may be lower for children with behavioral problems than recommended for adults with psychotic symptoms (100–400 µg/L). When dosing pipamperone in children and adolescents, bodyweight should be taken into account

    Systematic Evaluation of the Descriptive and Predictive Performance of Paediatric Morphine Population Models

    Get PDF
    Purpose: A framework for the evaluation of paediatric population models is proposed and applied to two different paediatric population pharmacokinetic models for morphine. One covariate model was based on a systematic covariate analysis, the other on fixed allometric scaling principles. Methods: The six evaluation criteria in the framework were 1) number of parameters and condition number, 2) numerical diagnostics, 3) prediction-based diagnostics, 4) η-shrinkage, 5) simulation-based diagnostics, 6) diagnostics of individual and population parameter estimates versus covariates, including measurements of bias and precision of the population values compared to the observed individual values. The framework entails both an internal and external model evaluation procedure. Results: The application of the framework to the two models resulted in the detection of overparameterization and misleading diagnostics based on individual predictions caused by high shrinkage. The diagnostic of individual and population parameter estimates versus covariates proved to be highly informative in assessing obtained covariate relationships. Based on the framework, the systematic covariate model proved to be superior over the fixed allometric model in terms of predictive performance. Conclusions: The proposed framework is suitable for the evaluation of paediatric (covariate) models and should be applied to corroborate the descriptive and predictive properties of these models

    Nonlinear pharmacokinetics of therapeutic proteins resulting from receptor mediated endocytosis

    Get PDF
    Receptor mediated endocytosis (RME) plays a major role in the disposition of therapeutic protein drugs in the body. It is suspected to be a major source of nonlinear pharmacokinetic behavior observed in clinical pharmacokinetic data. So far, mostly empirical or semi-mechanistic approaches have been used to represent RME. A thorough understanding of the impact of the properties of the drug and of the receptor system on the resulting nonlinear disposition is still missing, as is how to best represent RME in pharmacokinetic models. In this article, we present a detailed mechanistic model of RME that explicitly takes into account receptor binding and trafficking inside the cell and that is used to derive reduced models of RME which retain a mechanistic interpretation. We find that RME can be described by an extended Michaelis–Menten model that accounts for both the distribution and the elimination aspect of RME. If the amount of drug in the receptor system is negligible a standard Michaelis–Menten model is capable of describing the elimination by RME. Notably, a receptor system can efficiently eliminate drug from the extracellular space even if the total number of receptors is small. We find that drug elimination by RME can result in substantial nonlinear pharmacokinetics. The extent of nonlinearity is higher for drug/receptor systems with higher receptor availability at the membrane, or faster internalization and degradation of extracellular drug. Our approach is exemplified for the epidermal growth factor receptor system

    Pharmacokinetic-Pharmacodynamic Modeling in Pediatric Drug Development, and the Importance of Standardized Scaling of Clearance.

    Get PDF
    Pharmacokinetic/pharmacodynamic (PKPD) modeling is important in the design and conduct of clinical pharmacology research in children. During drug development, PKPD modeling and simulation should underpin rational trial design and facilitate extrapolation to investigate efficacy and safety. The application of PKPD modeling to optimize dosing recommendations and therapeutic drug monitoring is also increasing, and PKPD model-based dose individualization will become a core feature of personalized medicine. Following extensive progress on pediatric PK modeling, a greater emphasis now needs to be placed on PD modeling to understand age-related changes in drug effects. This paper discusses the principles of PKPD modeling in the context of pediatric drug development, summarizing how important PK parameters, such as clearance (CL), are scaled with size and age, and highlights a standardized method for CL scaling in children. One standard scaling method would facilitate comparison of PK parameters across multiple studies, thus increasing the utility of existing PK models and facilitating optimal design of new studies
    corecore