26 research outputs found

    Quinazoline and phthalazine derivatives as novel melatonin receptor ligands analogues of agomelatine

    No full text
    International audienceFor further development of successors of Agomelatine through modulation of its pharmacokinetic properties, we report herein the design, synthesis and pharmacological results of a new family of melatonin receptor ligands. Issued from the introduction of quinazoline and phthalazine scaffolds carrying an ethyl amide lateral chain and a methoxy group as bioisosteric ligands analogues of previously developed Agomelatine. The biological activity of the prepared analogues was compared with that of Agomelatine. Quinazoline and phthalazine rings proved to be a versatile scaffold for easy feasible MT1 and MT2 ligands. Potent agonists with sub-micromolar binding affinity were obtained. However, the presence of two nitrogen atoms resulted in compounds with lower affinity for both MT1 and MT2, in comparison with the parent compound, balanced by the exhibition of good pharmacokinetic properties

    Novel Conformationally Constrained Analogues of Agomelatine as New Melatoninergic Ligands

    No full text
    Novel conformationally restricted analogues of agomelatine were synthesized and pharmacologically evaluated at MT1 and MT2 melatoninergic receptors. Replacement of the N-acetyl side chain of agomelatine by oxathiadiazole-2-oxide (compound 3), oxadiazole-5(4H)-one (compound 4), tetrazole (compound 5), oxazolidinone (compound 7a), pyrrolidinone (compound 7b), imidazolidinedione (compound 12), thiazole (compounds 13 and 14) and isoxazole moieties (compound 15) led to a decrease of the melatoninergic binding affinities, particularly at MT1. Compounds 7a and 7b exhibiting nanomolar affinity towards the MT2 receptors subtypes have shown the most interesting pharmacological results of this series with the appearance of a weak MT2-selectivity

    Synthesis and biological evaluation of new naphtho- and quinolinocyclopentane derivatives as potent melatoninergic (MT 1 /MT 2 ) and serotoninergic (5-HT 2C ) dual ligands

    No full text
    International audienceWe recently reported a series of naphthofuranic compounds as constrained agomelatine analogues. Herein, in order to explore alternative ethyl amide side chain rigidification, naphthocyclopentane and quinolinocyclopentane derivatives with various acetamide modulations were synthesized and evaluated at both melatonin (MT1, MT2) and serotonin (5-HT2C) receptors. These modifications has led to compounds with promising dual affinity and high MTs receptors agonist activity. Enantiomeric separation was then performed on selected compounds allowing us to identify levogyre enantiomers (−)-17g and (−)-17k as the highest (MT1, MT2)/5-HT2C dual ligands described nowadays

    Melatonin MT1 receptor as a novel target in neuropsychopharmacology: MT1 ligands, pathophysiological and therapeutic implications, and perspectives

    No full text
    Melatonin (MLT), a neuromodulator mainly acting through two G-protein coupled receptors MT1 and MT2, regulates many brain functions, including circadian rhythms, mood, pain and sleep. MLT and non-selective MT1/MT2 receptor agonists are clinically used in neuropsychiatric and/or sleep disorders. However, the selective roles of the MT1 and MT2 receptors need to be clarified. Here, we review the role of the MT1 receptor in neuropsychopharmacology, describe the anatomical localization of MT1 receptors in the brain, discuss the medicinal chemistry, biochemistry and molecular aspects of the receptor, and explore the findings linking MT1 receptors to psychiatric and neurological disorders. MT1 receptors are localized in brain regions which regulate circadian rhythms, sleep, and mood, such as the suprachiasmatic nucleus, cortex, hippocampus, dorsal raphe nucleus and lateral hypothalamus. Their activation modulates intracellular signaling pathways also targeted by psychoactive drugs, including antidepressants and mood stabilizers. MT1 receptor knockout mice display increased anxiety, a depressive-like phenotype, increased propensity to reward and addiction, and reduced Rapid-Eye-Movement sleep. These behavioral dysfunctions are associated with altered serotonergic and noradrenergic neurotransmissions. Several studies indicate that the MT1, rather than MT2, receptor is implicated in circadian rhythm regulation. The involvement of MT1 receptors in Alzheimer's and Huntington diseases has also been proposed. Postmortem studies in depressed patients have further confirmed the possible involvement of MT1 receptors in depression. Overall, there is substantial evidence indicating a role for MT1 receptor in modulating brain function and mood. Consequently, this MLT receptor subtype deserves to be further examined as a novel target for neuropsychopharmacological drug development

    Synthesis and pharmacological evaluation of dual ligands for melatonin (MT1/MT2) and serotonin 5-HT2C receptor subtypes (II)

    No full text
    International audienceIn this paper we report the investigation of C-3 and β-acetamide positions of agomelatine analogues. Concomitant insertion of a hydroxymethyl in the β-acetamide position and aliphatic groups in C-3 position produced a positive effect on both melatonin (MT1, MT2) and serotonin (5-HT2C) binding affinities. In particular, the allyl 6b and ethyl 15a represented the more interesting compounds of this series. Furthermore, the introduction of methyl cycloalkyl groups (compounds 11a, 12a) exhibited no change in both MT2 and 5-HT2C binding affinities while a decrease of MT1 binding affinity occurred leading to an MT2 selectivity. Finally, the acetamide modulation has led to methyl thiourea 11h, with a weak MT2 selectivity
    corecore