105 research outputs found

    FWM-based wavelength conversion of 40 Gbaud PSK signals in a silicon germanium waveguide

    No full text
    We demonstrate four wave mixing (FWM) based wavelength conversion of 40 Gbaud differential phase shift keyed (DPSK) and quadrature phase shift keyed (QPSK) signals in a 2.5 cm long silicon germanium waveguide. For a 290 mW pump power, bit error ratio (BER) measurements show approximately a 2-dB power penalty in both cases of DPSK (measured at a BER of 10-9) and QPSK (at a BER of 10-3) signals that we examined

    Phase sensitive amplification in a highly nonlinear lead-silicate fibre

    No full text
    We experimentally demonstrate phase-sensitive amplification in a highly nonlinear lead-silicate W-type fibre. A phase-sensitive gain swing of 6dB was observed in a 1.56m sample of the fibre for a total launched power of 33dBm

    Ultra-compact amorphous silicon waveguide for wavelength conversion

    No full text
    In this work we demonstrate, for the first time, successful four wave mixing (FWM) based wavelength conversion of Binary Phase Shift Keyed (BPSK) and Quadrature Phase Shift Keyed (QPSK) signals, at 20 Gb/s bitrate, in a 1-mm long amorphous silicon waveguide. A maximum FWM-efficiency of -26 dB was achieved by employing a pump power of just 70 mW, establishing this technology as a contender for the development of ultra-compact, low power, silicon photonics wavelength converter. Bit Error Ratio (BER) measurements demonstrated successful conversion with less than 1 dB penalty level, for both BPSK and QPSK signals (at BER = 10-5)

    All-optical phase regeneration with record PSA extinction ratio in a low-birefringence silicon germanium waveguide

    No full text
    We report a low-power continuous wave-pumped phase sensitive amplifier (PSA)-based phase regenerator implemented in a passive silicon-based waveguide. A polarization assisted-PSA, consisting of two orthogonally-polarized pumps and a phase-locked signal copolarized to one of them, was implemented in a low-birefringence silicon germanium (SiGe) waveguide. The strong TE/TM modal symmetry of the waveguide and its large nonlinear coefficient enabled the achievement of an extremely large phase sensitive extinction ratio of approximately 29 dB for a total input power of only 21.3 dBm. This SiGe-based PSA was used to demonstrate phase regeneration on a 20 Gb/s differential phase-shift keying signal, thereby reducing its error vector magnitude and phase error by three and six times respectively and enabling a bit-error ratio improvement of up to 2 dB

    Augmenting forearm crutches with wireless sensors for lower limb rehabilitation

    No full text
    Forearm crutches are frequently used in the rehabilitation of an injury to the lower limb. The recovery rate is improved if the patient correctly applies a certain fraction of their body weight (specified by a clinician) through the axis of the crutch, referred to as partial weight bearing (PWB). Incorrect weight bearing has been shown to result in an extended recovery period or even cause further damage to the limb. There is currently no minimally invasive tool for long-term monitoring of a patient's PWB in a home environment. This paper describes the research and development of an instrumented forearm crutch that has been developed to wirelessly and autonomously monitor a patient's weight bearing over the full period of their recovery, including its potential use in a home environment. A pair of standard forearm crutches are augmented with low-cost off-the-shelf wireless sensor nodes and electronic components to provide indicative measurements of the applied weight, crutch tilt and hand position on the grip. Data are wirelessly transmitted between crutches and to a remote computer (where they are processed and visualized in LabVIEW), and the patient receives biofeedback by means of an audible signal when they put too much or too little weight through the crutch. The initial results obtained highlight the capability of the instrumented crutch to support physiotherapists and patients in monitoring usage

    Lead-germanate glasses and fibers: a practical alternative to tellurite for nonlinear fiber applications

    Get PDF
    We report on the fabrication of novel lead-germanate glasses and fibers. We have characterized these glasses in terms of their thermal properties, Raman spectra and refractive indices (both linear and nonlinear) and present them as viable alternatives to tellurite glasses for applications requiring highly nonlinear optical fibers. © 2013 Optical Society of America.H. Tilanka Munasinghe, Anja Winterstein-Beckmann, Christian Schiele, Danilo Manzani, Lothar Wondraczek, Shahraam Afshar V., Tanya M. Monro, and Heike Ebendorff-Heidepriemhttp://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-9-1488&origin=searc
    • …
    corecore