30 research outputs found

    Controlled Cracking of Large Size Concrete Structures by a Steam Pressure Cracking Agent

    Get PDF
    The dismantling of large concrete structures causes environmental pollution due to the dispersion of polluted micro-particles. The purpose of this study is to develop an environmentally friendly demolition method. Steam pressure cracking (SPC) is a method that can safely and quickly separate concrete because there is less vibration compared to the explosion method. To date, the authors have shown that the direction of cracking in a small sample can be controlled by an induction hole. The principle of control is that the elastic wave of compression stress generated from the SPC reaction changes to a tensile elastic wave at the induction hole, and a crack is initiated. In this study, it was shown that the direction of crack propagation can be controlled by using induction holes in large concrete structures that are 1m on each side. Further, in the SPC method, the large amount of concrete powder generated by the explosion method is not produced, and there is no risk of secondary contamination by fine concrete powder. It was also possible to separate small pieces from the end face of the large concrete by SPC and induction holes. The area over which the crack propagated depends on the energy generated from the SPC agent, and the relationship was linear. By applying an SPC agent to dismantling large concrete structures, we can achieve controlled cracking safely and quickly without any environmental pollution.&nbsp

    Elastic Wave Property of Concrete Decomposed by Steam Pressure Cracking Agent

    Get PDF
    A steam pressure cracking (SPC) agent is a method that can dismantle concrete safely and quickly. In previous studies, the authors showed that the direction of the crack could be controlled by the tensile stress at the induction holes and not by the compressive stress at the SPC hole. We demonstrate that the compression elastic wave changes to a tensile wave when the wave is reflected at the free surface of the induction hole. We also examined the properties of the concrete by developing an elastic wave measuring system that is difficult to break down even in high-temperature, wet, and radiation environment. The elastic wave velocity change in the four concrete types was less than 4%. It was found that the standard deviation value, σ, changed four times. Therefore, it is possible to determine the deterioration of the internal structure of concrete using the standard deviation value σ, which indicates the dispersion of the elastic wave velocity

    Elastic Wave Property of Concrete Decomposed by Steam Pressure Cracking Agent

    Get PDF
    A steam pressure cracking (SPC) agent is a method that can dismantle concrete safely and quickly. In previous studies, the authors showed that the direction of the crack could be controlled by the tensile stress at the induction holes and not by the compressive stress at the SPC hole. We demonstrate that the compression elastic wave changes to a tensile wave when the wave is reflected at the free surface of the induction hole. We also examined the properties of the concrete by developing an elastic wave measuring system that is difficult to break down even in high-temperature, wet, and radiation environment. The elastic wave velocity change in the four concrete types was less than 4%. It was found that the standard deviation value, σ, changed four times. Therefore, it is possible to determine the deterioration of the internal structure of concrete using the standard deviation value σ, which indicates the dispersion of the elastic wave velocity

    <Poster Presentation 18>Inner Angles Made of Consecutive Three Points on a Circle for Chaotic and Random Series

    Get PDF
    [Date] November 28 (Mon) - December 2 (Fri), 2011: [Place] Kyoto University Clock Tower Centennial Hall, Kyoto, JAPA

    Soybean (Glycine max (L.) Merr.) Yield Reduction due to Late Sowing as a Function of Radiation Interception and Use in a Cool Region of Northern Japan

    No full text
    Yields decrease when soybean is sown later than recommended in the cool climate of the Tohoku region of Japan. However, the factors responsible for this decrease are not fully understood. We investigated the effects of late sowing on growth, phenological development, yield, yield components, and radiation interception of three soybean cultivars in two consecutive years and analyzed the relationships of those variables with temperature and soil volumetric moisture content (SMC). Averaged across years and cultivars, yields decreased significantly when plants were sown approximately three weeks late. Yield reductions were partially due to reductions in node number per plant, dry matter production, and capture of cumulative irradiance, resulting from slowed canopy development during vegetative and early reproductive stages. The number of seeds per pod was one of the major determinants of the variation in yield. Owing to the delay in sowing date, the reduction in seeds per pod was likely due to low temperatures during the 20 days after seed filling began. Occasional lower SMC during reproductive stages did not affect yield, yield components, and growth parameters. However, these results were obtained from the two years&rsquo; experiments. Therefore, further investigations of the relationship of yield with temperature and SMC under different years and sites are needed
    corecore