7,588 research outputs found
Event-Triggered Observers and Observer-Based Controllers for a Class of Nonlinear Systems
In this paper, we investigate the stabilization of a nonlinear plant subject
to network constraints, under the assumption of partial knowledge of the plant
state. The event triggered paradigm is used for the observation and the control
of the system. Necessary conditions, making use of the ISS property, are given
to guarantee the existence of a triggering mechanism, leading to asymptotic
convergence of the observer and system states. The proposed triggering
mechanism is illustrated in the stabilization of a robot with a flexible link
robot.Comment: Proceedings of the 2015 American Control Conference - ACC 201
Elevated Hippocampal Cholinergic Neurostimulating Peptide precursor protein (HCNP-pp) mRNA in the amygdala in major depression
The amygdala is innervated by the cholinergic system and is involved in major depressive disorder (MDD). Evidence suggests a hyper-activate cholinergic system in MDD. Hippocampal Cholinergic Neurostimulating Peptide (HCNP) regulates acetylcholine synthesis. The aim of the present work was to investigate expression levels of HCNP-precursor protein (HCNP-pp) mRNA and other cholinergic-related genes in the postmortem amygdala of MDD patients and matched controls (females: N=16 pairs; males: N=12 pairs), and in the mouse unpredictable chronic mild stress (UCMS) model that induced elevated anxiety-/depressive-like behaviors (females: N=6 pairs; males: N=6 pairs). Results indicate an up-regulation of HCNP-pp mRNA in the amygdala of women with MDD (p<0.0001), but not males, and of UCMS-exposed mice (males and females; p=0.037). HCNP-pp protein levels were investigated in the human female cohort, but no difference was found. There were no differences in gene expression of acetylcholinesterase (AChE), muscarinic (mAChRs) or nicotinic receptors (nAChRs) between MDD subjects and controls or UCMS and control mice, except for an up-regulation of AChE in UCMS-exposed mice (males and females; p=0.044). Exploratory analyses revealed a baseline expression difference of cholinergic signaling-related genes between women and men (p<0.0001). In conclusion, elevated amygdala HCNP-pp expression may contribute to mechanisms of MDD in women, potentially independently from regulating the cholinergic system. The differential expression of genes between women and men could also contribute to the increased vulnerability of females to develop MDD.Fil: Bassi, Sabrina Cecilia. University of Pittsburgh; Estados Unidos. Hospital Italiano. Instituto de Ciencias Básicas y Medicina Experimental; ArgentinaFil: Seney, Marianne L.. University of Pittsburgh; Estados UnidosFil: Argibay, Pablo. Hospital Italiano. Instituto de Ciencias Básicas y Medicina Experimental; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Sibille, Etienne. University of Pittsburgh; Estados Unidos. University of Toronto; Canad
IllinoisGRMHD: An Open-Source, User-Friendly GRMHD Code for Dynamical Spacetimes
In the extreme violence of merger and mass accretion, compact objects like
black holes and neutron stars are thought to launch some of the most luminous
outbursts of electromagnetic and gravitational wave energy in the Universe.
Modeling these systems realistically is a central problem in theoretical
astrophysics, but has proven extremely challenging, requiring the development
of numerical relativity codes that solve Einstein's equations for the
spacetime, coupled to the equations of general relativistic (ideal)
magnetohydrodynamics (GRMHD) for the magnetized fluids. Over the past decade,
the Illinois Numerical Relativity (ILNR) Group's dynamical spacetime GRMHD code
has proven itself as a robust and reliable tool for theoretical modeling of
such GRMHD phenomena. However, the code was written "by experts and for
experts" of the code, with a steep learning curve that would severely hinder
community adoption if it were open-sourced. Here we present IllinoisGRMHD,
which is an open-source, highly-extensible rewrite of the original
closed-source GRMHD code of the ILNR Group. Reducing the learning curve was the
primary focus of this rewrite, with the goal of facilitating community
involvement in the code's use and development, as well as the minimization of
human effort in generating new science. IllinoisGRMHD also saves computer time,
generating roundoff-precision identical output to the original code on
adaptive-mesh grids, but nearly twice as fast at scales of hundreds to
thousands of cores.Comment: 37 pages, 6 figures, single column. Matches published versio
- …