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Abstract

The amygdala is innervated by the cholinergic system and is involved in major depressive disorder 

(MDD). Evidence suggests a hyper-activate cholinergic system in MDD. Hippocampal 

Cholinergic Neurostimulating Peptide (HCNP) regulates acetylcholine synthesis. The aim of the 

present work was to investigate expression levels of HCNP-precursor protein (HCNP-pp) mRNA 

and other cholinergic-related genes in the postmortem amygdala of MDD patients and matched 

controls (females: N=16 pairs; males: N=12 pairs), and in the mouse unpredictable chronic mild 

stress (UCMS) model that induced elevated anxiety-/depressive-like behaviors (females: N=6 

pairs; males: N=6 pairs). Results indicate an up-regulation of HCNP-pp mRNA in the amygdala of 

women with MDD (p<0.0001), but not males, and of UCMS-exposed mice (males and females; 

p=0.037). HCNP-pp protein levels were investigated in the human female cohort, but no 

difference was found. There were no differences in gene expression of acetylcholinesterase 

(AChE), muscarinic (mAChRs) or nicotinic receptors (nAChRs) between MDD subjects and 

controls or UCMS and control mice, except for an up-regulation of AChE in UCMS-exposed mice 

(males and females; p=0.044). Exploratory analyses revealed a baseline expression difference of 

cholinergic signaling-related genes between women and men (p<0.0001). In conclusion, elevated 
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amygdala HCNP-pp expression may contribute to mechanisms of MDD in women, potentially 

independently from regulating the cholinergic system. The differential expression of genes 

between women and men could also contribute to the increased vulnerability of females to 

develop MDD.
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Introduction

Major Depressive Disorder (MDD) is a severe mental disorder that is often chronic and 

recurrent and that leads to substantial impairments in an individual’s ability to take care of 

everyday responsibilities. MDD is the leading cause of disability worldwide, as measured by 

years lost due to disability (WHO, 2008). The World Health Organization ranked MDD as 

the 3rd leading cause of burden of disease as of 2004, but importantly, projected that MDD 

would be the number one cause for burden of disease by 2030 (WHO, 2008).

In the 1970s, Janowsky et al. first proposed a possible involvement of the cholinergic system 

in the etiology of MDD (Janowsky et al., 1974; Janowsky et al., 1972). They hypothesized 

that a given affective state may represent a balance between central cholinergic and 

adrenergic neurotransmitter activity in those areas of the brain that regulate affect, with 

depression being a disease of cholinergic dominance and mania being a disease of 

adrenergic dominance (Janowsky et al., 1974; Janowsky et al., 1972). This possible 

mechanism was recently revisited by Mineur and Piccioto (Mineur and Picciotto, 2010). 

Neurotransmission of the cholinergic system is carried out by acetylcholine (ACh), which is 

synthesized by cholineacetyltransferase (ChAt) and degraded by acetylcholinesterase 

(AChE). The main receptors for ACh are the nicotinic (nAChRs) and muscarinic (mAChRs) 

receptors. Several lines of evidence suggest involvement of the cholinergic system in MDD. 

Organophosphate poisoning inhibits AChE, resulting in increased ACh, and can cause 

depressive-like behavior in humans (Gershon and Shaw, 1961). Additionally, a neural 

nAChR antagonist reduces anxiety-like behavior in mice (Roni and Rahman, 2011) and an 

α4β2nAChR partial agonist elicits antidepressant properties in the forced swim test in mice 

(Zhang et al., 2012). Administration of scopolamine (a mAChR antagonist) showed 

antidepressant properties in unipolar and bipolar patients (Drevets and Furey, 2010; Furey 

and Drevets, 2006; Furey et al., 2010), and MDD patients on both oral scopolamine and 

citalopram had better remission rates than with citalopram alone (Khajavi et al., 2012). 

Many MDD patients exhibit sleep disturbances, including a decrease in rapid eye movement 

(REM) latency. Interestingly, a cholinergic agonist produced a faster induction of REM 

sleep only in MDD patients and in subjects at high risk for psychiatric disorders (Palagini et 

al., 2013). Finally, knockdown of AChE in the hippocampus of adult mice increases anxiety- 

and depression-like behaviors and susceptibility to social stress, which was prevented by 

fluoxetine (Mineur et al., 2013). Taken together, these results support the idea that hyper-

activation of the cholinergic system may be involved in MDD.
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Hippocampal Cholinergic Neurostimulating Peptide (HCNP) is involved in regulating ACh 

synthesis in a medial septal nucleus culture system (Ojika et al., 1992) by increasing the 

levels of ChAT in cholinergic neurons (Uematsu et al., 2009). HCNP is an undecapeptide 

cleaved from the precursor protein (HCNP-pp) (Otsuka and Ojika, 1996). HCNP-pp is also 

known as phosphatidylethanolamine-binding protein (PEBP) and Raf kinase inhibitor 

protein (RKIP) (Sedivy, 2011). The release of HCNP from hippocampal culture is 

specifically mediated by the NMDAR (Ojika et al., 1998). Results suggest that HCNP/

HCNP-pp also acts as a key regulator for differentiation of cultured hippocampal progenitor 

cells (Sagisaka et al., 2010).

At the neural network level, changes in the function of several cortical and subcortical brain 

regions are thought to underlie the mood regulation deficit in depression (Seminowicz et al., 

2004). We previously found differential gene expression in the amygdala of men and 

women with MDD compared to controls, although with notable sex differences (Guilloux et 

al., 2012; Sibille et al., 2009). This is in accordance with neuroimaging studies showing 

reduced volume or grey matter density of the amygdala in female MDD patients compared 

to control subjects, with no change in male MDD (Hastings et al., 2004; Kong et al., 2013).

The amygdala receives cholinergic input from the Nucleus Basalis of Meynert (Schafer et 

al., 1998) and expresses both muscarinic and nicotinic receptors (Klein and Yakel, 2006; 

McDonald and Mascagni, 2010; 2011). However, the cholinergic system in the amygdala 

has not been studied in detail in MDD subjects. Here, our working hypothesis is that HCNP-

pp expression in the amygdala is involved in the pathogenesis of MDD by regulating the 

cholinergic system through HCNP. The aim of the present work was to investigate gene 

expression levels of HCNP-pp and genes involved in the cholinergic system in the 

postmortem amygdala of MDD patients and matched controls, and in a mouse model that 

elicits increased anxiety-/depressive-like behaviors.

Materials and Methods

Details of all methods are available in the Supplementary Information.

Human postmortem subjects

Brain samples were obtained after consent from next-of-kin during autopsies conducted at 

the Allegheny County Medical Examiner’s Office (Pittsburgh, PA, USA) using procedures 

approved by University of Pittsburgh’s Institutional Review Board and Committee for 

Oversight of Research Involving the Dead. Two cohorts of MDD subjects were examined 

here (male, n=12 pairs; female, n=16 pairs). Each MDD subject was matched with one 

control subject for sex and as closely as possible for age (Tables 1 and 2). See cohort details 

in Supplementary Information and (Guilloux et al., 2012; Sibille et al., 2009). The effects of 

putative confounds (age, antidepressants, death by suicide, pH, PMI, RNA ratio, RIN) were 

evaluated. When comparing male MDD subjects versus male controls, or female MDD 

subjects versus female controls, subject groups did not differ in mean age, postmortem 

interval (PMI), RNA integrity number (RIN), RNA ratio, or brain pH, as determined by one-

way ANOVA (p>0.05). When comparing men and women, pH and RNA ratio were 

significantly different (p=0.009 and p=0.004, respectively) in MDD patients but they did not 
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differ in RIN. Importantly, RIN is a better indicator of RNA quality than pH (Stan et al., 

2006) or RNA ratio (Copois et al., 2007). Subjects did not differ in mean age, 

antidepressants, death by suicide or PMI. Male and female control subjects did not differ by 

age, pH, PMI, RNA ratio, or RIN. Significant co-factors were included in the ANCOVA 

analyses.

Protein purification and Western blotting

Following RNA extraction using TRIzol reagent (Invitrogen, Carlsbad, CA, USA), acetone 

precipitation of proteins was carried out (Guilloux et al., 2012). Using Western blotting, 

HCNP-pp signal ratios relative to actin were calculated. To reduce the within- and between-

subject measurement variance, samples were processed in matched pairs on the same gel 

four times, and results were replicated for a total of four different Western blots, with 16 

replicates per pair (Curley et al., 2011).

Mouse samples

Amygdala cDNA from a mouse cohort previously described was used (Edgar et al., 2011).

Real-time quantitative polymerase chain reaction (qPCR)

qPCR analyses were performed using specific primers for HCNP-pp, AChE, ChAt, 

mAChRs (1-4) and nAChRs (α3, α4, α7, and β2) and three internal controls (beta-actin, 

cyclophilin A, glyceraldehyde-3-phosphate dehydrogenase) on amygdala cDNA samples, as 

described previously (Sibille et al., 2009). In brief, small PCR products (80–120 basepairs) 

were amplified in quadruplet on an Opticon real-time PCR machine (BioRad, Waltham, 

MA, USA). Each qPCR run included one MDD subject and one matched control.

Using a similar qPCR methodology as described above for human samples, qPCR on mouse 

samples was performed. Each run included one UCMS mouse and one control mouse, 

matched for sex.

Statistical analysis

Human samples—Diagnosis-related expression differences in gene of interest (GOI) 

signal were determined by analysis of covariance (ANCOVA) using SPSS (SPSS, Inc., 

Chicago, IL, USA). Relevant factors showing significant differences by ANOVA were 

included in the ANCOVA model. The qPCR data were averaged across the four replicates 

and transformed into expression levels relative to the internal control genes. Variance 

homogeneity was tested by Levenés test. Sex-related expression differences in GOI signal 

were determined by analysis of covariance (ANCOVA), using a similar method. Since gene 

expression in sex-related comparisons did not present variance homogeneity, data were 

transformed by taking the logarithm (ln) of gene expression values.

Mouse samples—Statistical analysis was performed using SPSS. The qPCR data were 

averaged across the four replicates and transformed into expression levels relative to the 

internal control genes. Sex was tested as the main factor in a one-way ANOVA. UCMS and 

control groups were compared in the ANOVA model with GOI mRNA as the dependent 

variable and subject group as the main effect.
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Both in human and mouse samples, correlation between genes expression was tested by 

Pearson correlation. p<0.05 was considered statistically significant.

Western blot statistical analysis—A diagnosis-related expression difference in protein 

relative expression was determined by ANCOVA. The Western blot data were averaged 

across the sixteen replicates for each subject. Variance homogeneity was tested by Levenés 

test. To determine relevant covariates, the same approach as for gene expression was used. 

Covariate factors with significant effects were used in the ANCOVA model with relative 

protein level as the dependent variable and subject group as the main effect.

Results

HCNP-pp mRNA expression is up-regulated in the amygdala of women with MDD

We investigated mRNA expression of HCNP-pp in postmortem brains of men and women 

with MDD and in matched control subjects. For scale cofactors (age, pH, RNA ratio, RIN, 

PMI) and nominal cofactors (sex, tobacco, antidepressants, suicide, and cohort), pH, sex and 

cohort were significant after Bonferroni-Holm correction and included in the ANCOVA 

model. We observed a significant increase in HCNP-pp mRNA expression in the combined 

male/female MDD subject group compared with controls (F=21.794, p<0.0001) (Figure 1a). 

In view of previously-reported sex differences in MDD-related gene changes in the 

amygdala and since women are twice as likely to have MDD compared to men (Kessler et 

al., 2003), we explored the potential contribution of sex to differential HCNP-pp expression 

in MDD. No scale or nominal cofactors were significant in females. HCNP-pp was 

significantly increased in the amygdala of women with MDD compared to controls 

(F=51.316, p<0.0001; Fig 1b). In males, no significant difference was observed in HCNP-pp 

expression between MDD subjects and controls (age as cofactor; Fig 1c).

Unchanged HCNP-pp protein level in female amygdala

We next investigated whether the up-regulation of HCNP-pp mRNA in the amygdala of 

females with MDD was associated with protein changes. Using a Western blot approach in 

postmortem female amygdala (N=15 pairs), we found no change in HCNP-pp between 

MDD and controls (F=0.525, p=0.475; cofactors: age and PMI) and no correlation with 

mRNA expression (Pearson R=0.127, p=0.503).

Absence of expression changes for cholinergic-related genes in the amygdala of MDD 
subjects

Since HNCP-pp/HCNP affects the production of ACh, we next investigated expression of 

genes related to the cholinergic system in the same postmortem amygdala samples, 

including mAChRs (1-4), nAChRs (α3, α4, α7, β2), ChAt, and AChE. The expression levels 

of ChAt and β2nAChR were too low in these samples, and were thus excluded from further 

analyses. We found no difference in the expression of these genes between MDD subjects 

and controls (Figure 2) (cofactors in the ANCOVA model: RNA ratio for AChE, nAChRs 

α3, α7; age and pH for nAChRs α3, α7). Interestingly, we found a robust main effect of sex 

on gene expression. Specifically, control females had significantly higher expression levels 

in compared to control males for AChE, mAChRs (1, 2 and 4), and nAChRs α3, α4 and α7 
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(cofactors: RNA ratio for nAChRα7; p<0.0001 for all genes examined), except for m3 

which showed no differences between control males and females (Figure 3a). This 

differential expression was also present in MDD subjects. Specifically, AChE (cofactors: 

RNA ratio), mAChRs (1, 2 and 4, cofactors: pH, RNA ratio) and nAChRs (α3 and α7, 

cofactors: pH, RNA ratio; α4, cofactors: RNA ratio), showed significantly higher expression 

levels in female MDD subjects compared to male MDD subjects (p<0.0001 for all genes 

examined), except for m3 which showed no differences between MDD males and females 

(Figure 3b). This differential expression between females and males was also observed when 

analyzing controls and patients together (p<0.0001; data not shown). Cholinergic-related 

genes were not affected by antidepressant treatment in MDD patients.

HCNP-pp mRNA expression is up-regulated in the amygdala of mice exposed to chronic 
stress

We examined gene expression of HCNP-pp in the amygdala of mice exposed to UCMS and 

non-stressed controls using samples from a previous study (Edgar et al., 2011). In that study, 

mice exposed to UCMS for a period of 4 weeks responded with characteristic increases in 

anxiety-/depressive-like behavior. Analyzing the females and males together (N=12 pairs), 

we found an up-regulation of HCNP-pp in the amygdala of UCMS mice compared to 

controls (F=4.912, p=0.037) (Figure 4a). Separated by sex, both groups showed a similar but 

non-significant increase in HCNP-pp expression (Figure 4b).

AChE expression is up-regulated in the amygdala of UCMS-exposed mice

We examined expression of mAChRs (1-4), nAChRs (α3, α4, α7, β2), ChAt, and AChE in 

the amygdala of mice exposed to chronic stress. The expression levels of ChAt, α4nAChR, 

and β2nAChR were too low, and were thus excluded from further analyses. Analyzing the 

females and males together, we observed an increased expression of AChE in the amygdala 

of UCMS-exposed mice compared to controls (F=4.559, p=0.044) (Figure 5). No difference 

in expression of mAChRs or nAChRs expression was found.

We also performed a differential expression analysis in the combined male/female cohort, as 

performed in the human experiments. No sex differences in gene expression were observed 

(data not shown).

Gene expression correlation patterns in postmortem amygdala

Given that all cholinergic pathway genes are essential for efficient cholinergic 

neurotransmission, it is likely that they are expressed in a coordinated fashion. It is thus 

possible that this co-expression structure may vary in MDD. Therefore, we investigated the 

degree of relationship between HCNP-pp and cholinergic-related genes expression in the 

human and mouse samples (Tables 3 and 4, respectively). In humans, we found significant 

correlations between several cholinergic genes expression both in control and MDD, in both 

sexes (Table 3). However, the correlation between HCNP-pp and cholinergic-related genes 

was observed only in men. Specifically, HCNP-pp expression was correlated with AChE 

and m2 in control and MDD subjects, with m1 and 4 expression in control male subjects and 

with m3 and nα4 in male MDD subjects. In the mouse amygdala, HCNP-pp expression was 

correlated with AChE in male and female mice exposed to UCMS and female controls. 
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HCNP-pp expression was also correlated with m1, 2, 4 and nα7 in female UCMS-exposed 

mice and with m1 in female controls (Table 4).

Discussion

In the present study, we report an up-regulation of HCNP-pp mRNA in the postmortem 

amygdala of women with MDD, with no change in men with MDD. Moreover, we found an 

up-regulation of genes involved in the cholinergic system in women compared to men, but 

no changes between MDD and control subjects. Also, we report a less robust up-regulation 

of HCNP-pp mRNA expression and an up-regulation of AChE in the amygdala of mice 

exposed to UCMS compared to controls. As in humans, no change was observed in genes 

related to the cholinergic system (except for AChE) between UCMS and control mice. 

Finally, we report a correlation in the expression of genes related to the cholinergic system 

in both humans and mice, as expected for an integrated neurotransmitter system. Together, 

the present results suggest that the differential expression of HCNP-pp observed in female 

MDD is not correlated with changes in the cholinergic system, at least at the mRNA level 

and in the amygdala. On the other hand, sex differences in expression of components of the 

cholinergic system might play a role in the increased susceptibility of women to suffer 

MDD.

HCNP-pp expression in human postmortem amygdala

The up-regulation of HCNP-pp is in accordance with results showing that an over-

expression of HCNP/HCNP-pp in the hippocampus from early life in transgenic mice elicits 

a depressive-like phenotype in old age (Matsukawa et al., 2010). Also, a reduction of 

HCNP-pp mRNA was found in the postmortem hippocampus of late Alzheimeŕs disease 

(AD) patients compared to controls (Maki et al., 2002), but these findings may be related to 

the overall AD-related reduction in cholinergic neurotransmission (Gil-Bea et al., 2005), 

rather than to MDD-related mechanisms where a hyper-activation of this system has been 

proposed.

Despite the observed up-regulation of HCNP-pp in amygdala of women with MDD, we 

found no changes in protein expression or correlation with mRNA levels, although 

limitations in detection method may have yielded false negative results (See limitations). 

This was surprising, although in agreement with previous reports indicating no correlation 

between HCNP-pp mRNA and protein levels (Tohdoh et al., 1997). Another study by 

Greenbaum et al. (2003) suggested three reasons for poor correlations between mRNA and 

protein levels: complicated and varied post-transcriptional mechanisms, protein in vivo half-

lives, and/or error and noise in both protein and mRNA experiments (Greenbaum et al., 

2003).

HCNP-pp regulation of the cholinergic system in the human amygdala

We found no difference in mRNA expression of AChE, nAChRs, or mAChRs between 

MDD subjects and matched controls when men and women were analyzed together or 

separately. Previous studies showed no change of β2nAChRs availability in the amygdala or 

hippocampus in MDD patients (Saricicek et al., 2012). Also, no difference in α7nAChRs 
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was found between postmortem hippocampus or perirhinal cortex of MDD patients and 

controls (Thomsen et al., 2011). On the other hand, no association between polymorphisms 

in m2AChR and MDD was found (Cohen-Woods et al., 2009), although there is opposing 

evidence (Comings et al., 2002; Wang et al., 2004). These results suggest that the 

differential expression of HCNP-pp does not affect expression of genes related to the 

cholinergic system in the amygdala. Interestingly, we found a strong correlation between the 

expression of HCNP-pp and AChE and ACh receptors in men (both MDD and control), but 

not in women. Thus, if HCNP-pp increases ACh levels with no increase in AChE or change 

in the receptors, high levels of ACh in the female brain could increase MDD vulnerability. 

On the other hand, when analyzing only the cholinergic-related genes, some correlations are 

present in control but not in MDD and vice versa, both in men and women, indicating that 

some degree of deregulation is present in the cholinergic system in the amygdala of MDD 

patients.

Sex difference of cholinergic genes expression in the amygdala

Interestingly, we found a robust up-regulation of genes related to the cholinergic system in 

women compared to men. We have previously reported differential expression of other 

genes, related to mitochondrial function for instance, in the amygdala between men and 

women (Lin et al., 2011), which together suggest that structural differences in amygdala 

gene expression may contribute to the increased susceptibility of women to suffer from 

MDD compared to men, and may include a cholinergic component. Indeed, sex differences 

in cholinergic function were observed, whereas women respond in a greater proportion and 

magnitude than men to scopolamine treatment for MDD and BD (Furey et al., 2010). Also, 

female non-smokers have higher availability of β2nAChR in certain brain regions compared 

to male non-smokers (Cosgrove et al., 2012). Moreover, women respond differently to 

administration of physostigmine (a reversible cholinesterase inhibitor that elevates ACh 

levels in the brain) (Rubin et al., 2003; Rubin et al., 1999).

Although the underlying mechanism that explains gender differences remains unclear, there 

are indications that hormones may have an important role in modulating the cholinergic 

system. In this sense, primary cultures of rat basal forebrain neurons exposed to 

physiological concentration of estrogen increased newly synthesized ACh (Pongrac et al., 

2004). Also, chronic estradiol replacement significantly enhanced potassium-stimulated 

acetylcholine release in the hippocampus of ovariectomized rats (Gibbs et al., 2004).

Here, we did not observe differential expression of cholinergic-related genes between male 

and female mice, suggesting these differences may not be conserved across species, 

although additional studies are warranted. Studies comparing the expression of cholinergic-

related genes in both the central nervous system and periphery in male and female mice are 

scarce. One study showed increased expression of all mAChRs(1–5) in the frontal cortex in 

males and of mAChRs 1–4 in the striatum in females, with no difference in other brain 

regions (including the hippocampus) (Benes et al., 2013). Another study showed differential 

activity of ChAT between males and females in the hippocampus at 17- and 25-months old 

but not at 5-months (Frick et al., 2002).
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HCNP-pp expression in mouse amygdala

Consistent with the results in MDD subjects, we found an up-regulation of HCNP-pp 

mRNA expression in the amygdala of mice exposed to UCMS compared to controls, 

although no sex difference was found. Despite the finding that transgenic mice which over-

express HCNP-pp exhibit depressive-like behaviors in old age (Matsukawa et al., 2010), 

another study reported a reduction of HCNP-pp in the hippocampus of rats exposed to stress 

(Kim and Kim, 2007). The latter result is in opposition with our observations, which may be 

explained by differences in methodology and/or brain region studied, namely different stress 

protocol, outcome measures, and region investigated.

HCNP-pp regulation of the cholinergic system in the mouse amygdala

As in the human cohorts, we did not find differential expression of genes related to the 

cholinergic system between UCMS-exposed and control mice, except for an up-regulation 

of AChE in UCMS-exposed mice. The up-regulation of AChE expression in the amygdala 

of UCMS-exposed mice may be a compensatory effect of increased ACh triggered by 

HCNP-pp, although further studies are needed to confirm this hypothesis. Also, we found a 

correlation between HCNP-pp and acetylcholine receptors expression only in females, 

especially in UCMS-exposed mice, suggesting sex-related differences in mechanisms 

involved in anxiety-/depressive-like behaviors between humans and mice for the cholinergic 

system.

Limitations

Some of the limitations of this study are inherent to investigation of heterogeneous cohorts 

and postmortem brain samples. Large numbers of clinical, demographic, and technical 

parameters have to be taken into consideration, and results are mostly correlative and cannot 

provide insight into developmental processes in MDD. The effects of putative confounds 

(antidepressants, death by suicide, pH, PMI, RNA ratio, RIN) were evaluated, however 

small samples sizes in parameter-delineated subgroups may have precluded definitive 

interpretations regarding the potential influence of these factors on the findings. For male 

MDD subjects, 4/12 had antidepressants present at the time of death and 6/12 died by 

suicide. For female MDD subjects, 11/16 had antidepressants present at the time of death 

and 6/16 died by suicide. No difference in HCNP-pp expression or in any other gene 

examined was found between patients who died by suicide compared to other modes of 

death or with or without AD (data not shown).

Other variables related to postmortem tissue samples (PMI, pH RNA ratio, RIN) were 

analyzed. pH of all brains used in this study was ≥6.1, a suggested value in the context of 

sudden deaths (Lewis, 2002). For RNA ratio, there was no correlation with RIN, which is a 

better indicator of RNA degradation (Copois et al., 2007). When comparing men and 

women, pH and RNA ratio were significantly different (p=0.009 and p=0.004, respectively) 

in MDD patients. Specifically, pH was considered as a cofactor for mAChRs 1, 2 and 4, and 

nAChRs α3 and α7. RNA ratio was considered as a cofactor for AChE, mAChRs 1, 2 and 4, 

and nAChRs α3, α7, and α4. Since pH and RNA ratio were not different between control 

males and females, it is unlikely that the results in MDD subjects were confounded by these 

parameters. Also RIN values did not differ between MDD females and males, which, as 
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mentioned earlier, is a better indicator of RNA quality than pH (Stan et al., 2006) or RNA 

ratio (Copois et al., 2007), supporting the significance of the overall findings.

HCNP-pp protein levels were significantly positively correlated with PMI. With one 

exception, all samples had PMI less than 30 hours, which is acceptable for human studies 

(Atz et al., 2007). Also, no difference in PMI was found between MDD and control subjects. 

Moreover, since there is a positive correlation between protein expression and PMI, it does 

not seem that the protein stability would be affected by this variable.

We measured HCNP-pp protein levels instead of HCNP since there is no commercially 

available antibody for the latter. Finally, we did not measure ChAt protein levels in the 

amygdala and only evaluated the cholinergic system in an indirect way by measuring the 

levels of gene transcript of mAChRs, nAChRs, and AChE.

Summary

In summary, we found an up-regulation of HCNP-pp mRNA in the postmortem amygdala of 

women with MDD but no change at the protein level. Since HCNP-pp is a precursor protein, 

changes in processing and post-translational modifications occur and may not have been 

measured here. Two alternate hypotheses/mechanisms are possible: First, even though we 

did not find a differential expression of acetylcholine receptors in the amygdala between 

MDD and control subjects, we cannot rule out a cholinergic deregulation in this structure 

(since different mechanisms can regulate receptor expression or function). In support, 

chronic administration of nicotine produced an up-regulation of β2α4nAChRs with no 

change at the mRNA level (Corringer et al., 2006). The amygdala receives cholinergic input 

from the Nucleus Basalis of Meynert located in the basal forebrain. ChAt is synthetized in 

the cytoplasm of the cholinergic neuron and is transported through the axon to the nerve 

terminals where it synthesizes Ach (Oda, 1999). At the same time, the amygdalar complex 

projects to the basal forebrain, in particular to the cholinergic neurons of the ventrolateral 

substantia innominata (Jolkkonen et al., 2002). Thus, it is possible that HCNP-pp, in 

particular HCNP, exerts its action in a different brain region since ChAt mRNA levels were 

too low in the amygdala in our cohort, and previous studies showed no detection of ChAt 

mRNA in the amygdala (Oda, 1999). A possible mechanism is that HCNP travels from the 

amygdala to the basal forebrain where it can regulate the expression of ChAt mRNA. This 

hypothesis is in accordance with previous experiments showing that an over-expression of 

HCNP-pp in the hippocampus increases the levels of ChAt in the septal nucleus (Uematsu et 

al., 2009), the main cholinergic projection to the hippocampus. However, further 

experiments are needed to test this hypothesis.

Although regulation the cholinergic system is the more plausible hypothesis for the function 

of HCNP-pp, considering that a correlation between HCNP-pp and cholinergic-related genes 

is observed in men, an alternate hypothesis is that the differential expression of HCNP-pp 

mRNA is affecting the cellular population in the amygdala. In addition to its role in 

regulating the cholinergic system, HCNP/HCNP-pp is also involved in differentiation of 

cultured adult rat hippocampal progenitor cells. More specifically, a down-regulation of 

HCNP-pp was correlated with an up-regulation of GFAP (astrocyte marker) (Sagisaka et al., 

2010). There is evidence of decreased GFAP in the amygdala of MDD patients, possibly 
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indicating a reduction of astrocyte density (Altshuler et al., 2010). Also, a reduction in glia 

was found in MDD patients (Bowley et al., 2002). Taking this in consideration, the up-

regulation of HCNP-pp we observed in the amygdala of women with MDD might be 

preventing progenitor cells from differentiating into astrocytes. Interestingly, reduced 

volume of the amygdala was reported in female MDD patients compared to control subjects, 

with no change in male MDD patients (Hastings et al., 2004). However, when analyzing the 

expression of GFAP in a previous study with the same samples used in our study, no 

difference between MDD and control postmortem female amygdala was found (Guilloux et 

al., 2012).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

This work was supported by National Institute of Mental Health MH084060 (ES), MH086637 (ES). SB was 
supported by an award jointly sponsored by the Fulbright Program and Bunge y Born Foundation and by a 
scholarship from CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas). We thank B. French for 
careful reading of the manuscript.

Role of the funding source. The funding agency had no role in the study design, data collection and analysis, 
decision to publish, or preparation of the manuscript. The content is solely the responsibility of the authors and does 
not necessarily represent the official views of the NIMH or the National Institutes of Health.

References

Altshuler LL, Abulseoud OA, Foland-Ross L, Bartzokis G, Chang S, Mintz J, et al. Amygdala 
astrocyte reduction in subjects with major depressive disorder but not bipolar disorder. Bipolar 
Disord. 2010; 12:541–549. [PubMed: 20712756] 

Atz M, Walsh D, Cartagena P, Li J, Evans S, Choudary P, et al. Methodological considerations for 
gene expression profiling of human brain. J Neurosci Methods. 2007; 163:295–309. [PubMed: 
17512057] 

Benes J, Mravec B, Kvetnansky R, Myslivecek J. The restructuring of muscarinic receptor subtype 
gene transcripts in c-fos knock-out mice. Brain Res Bull. 2013; 94:30–39. [PubMed: 23395867] 

Bowley MP, Drevets WC, Ongur D, Price JL. Low glial numbers in the amygdala in major depressive 
disorder. Biological Psychiatry. 2002; 52:404–412. [PubMed: 12242056] 

Cohen-Woods S, Gaysina D, Craddock N, Farmer A, Gray J, Gunasinghe C, et al. Depression Case 
Control (DeCC) Study fails to support involvement of the muscarinic acetylcholine receptor M2 
(CHRM2) gene in recurrent major depressive disorder. Human Molecular Genetics. 2009; 18:1504–
1509. [PubMed: 19181679] 

Comings DE, Wu S, Rostamkhani M, McGue M, Iacono WG, MacMurray JP. Association of the 
muscarinic cholinergic 2 receptor (CHRM2) gene with major depression in women. Am J Med 
Genet. 2002; 114:527–529. [PubMed: 12116189] 

Copois V, Bibeau F, Bascoul-Mollevi C, Salvetat N, Chalbos P, Bareil C, et al. Impact of RNA 
degradation on gene expression profiles: assessment of different methods to reliably determine 
RNA quality. J Biotechnol. 2007; 127:549–559. [PubMed: 16945445] 

Corringer PJ, Sallette J, Changeux JP. Nicotine enhances intracellular nicotinic receptor maturation: a 
novel mechanism of neural plasticity? J Physiol Paris. 2006; 99:162–171. [PubMed: 16458492] 

Cosgrove KP, Esterlis I, McKee SA, Bois F, Seibyl JP, Mazure CM, et al. Sex differences in 
availability of beta2*-nicotinic acetylcholine receptors in recently abstinent tobacco smokers. Arch 
Gen Psychiatry. 2012; 69:418–427. [PubMed: 22474108] 

Bassi et al. Page 11

J Psychiatr Res. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Curley AA, Arion D, Volk DW, Asafu-Adjei JK, Sampson AR, Fish KN, et al. Cortical deficits of 
glutamic acid decarboxylase 67 expression in schizophrenia: clinical, protein, and cell type-
specific features. The American Journal of Psychiatry. 2011; 168:921–929. [PubMed: 21632647] 

Drevets WC, Furey ML. Replication of scopolamine’s antidepressant efficacy in major depressive 
disorder: a randomized, placebo-controlled clinical trial. Biological Psychiatry. 2010; 67:432–438. 
[PubMed: 20074703] 

Edgar NM, Touma C, Palme R, Sibille E. Resilient emotionality and molecular compensation in mice 
lacking the oligodendrocyte-specific gene Cnp1. Translational Psychiatry. 2011; 1:e42. [PubMed: 
22832658] 

Frick KM, Burlingame LA, Delaney SS, Berger-Sweeney J. Sex differences in neurochemical markers 
that correlate with behavior in aging mice. Neurobiol Aging. 2002; 23:145–158. [PubMed: 
11755029] 

Furey ML, Drevets WC. Antidepressant efficacy of the antimuscarinic drug scopolamine: a 
randomized, placebo-controlled clinical trial. Archives of General Psychiatry. 2006; 63:1121–
1129. [PubMed: 17015814] 

Furey ML, Khanna A, Hoffman EM, Drevets WC. Scopolamine produces larger antidepressant and 
antianxiety effects in women than in men. Neuropsychopharmacology. 2010; 35:2479–2488. 
[PubMed: 20736989] 

Gershon S, Shaw FH. Psychiatric sequelae of chronic exposure to organophosphorus insecticides. 
Lancet. 1961; 1:1371–1374. [PubMed: 13704751] 

Gibbs RB, Gabor R, Cox T, Johnson DA. Effects of raloxifene and estradiol on hippocampal 
acetylcholine release and spatial learning in the rat. Psychoneuroendocrinology. 2004; 29:741–
748. [PubMed: 15110923] 

Gil-Bea FJ, Garcia-Alloza M, Dominguez J, Marcos B, Ramirez MJ. Evaluation of cholinergic 
markers in Alzheimer’s disease and in a model of cholinergic deficit. Neurosci Lett. 2005; 375:37–
41. [PubMed: 15664119] 

Greenbaum D, Colangelo C, Williams K, Gerstein M. Comparing protein abundance and mRNA 
expression levels on a genomic scale. Genome Biol. 2003; 4:117. [PubMed: 12952525] 

Guilloux JP, Douillard-Guilloux G, Kota R, Wang X, Gardier AM, Martinowich K, et al. Molecular 
evidence for BDNF- and GABA-related dysfunctions in the amygdala of female subjects with 
major depression. Molecular Psychiatry. 2012; 17:1130–1142. [PubMed: 21912391] 

Hastings RS, Parsey RV, Oquendo MA, Arango V, Mann JJ. Volumetric analysis of the prefrontal 
cortex, amygdala, and hippocampus in major depression. Neuropsychopharmacology. 2004; 
29:952–959. [PubMed: 14997169] 

Janowsky DS, el-Yousef MK, Davis JM. Acetylcholine and depression. Psychosom Med. 1974; 
36:248–257. [PubMed: 4829619] 

Janowsky DS, el-Yousef MK, Davis JM, Sekerke HJ. A cholinergic-adrenergic hypothesis of mania 
and depression. Lancet. 1972; 2:632–635. [PubMed: 4116781] 

Jolkkonen E, Miettinen R, Pikkarainen M, Pitkanen A. Projections from the amygdaloid complex to 
the magnocellular cholinergic basal forebrain in rat. Neuroscience. 2002; 111:133–149. [PubMed: 
11955718] 

Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, et al. The epidemiology of 
major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). 
Journal of the American Medical Association. 2003; 289:3095–3105. [PubMed: 12813115] 

Khajavi D, Farokhnia M, Modabbernia A, Ashrafi M, Abbasi SH, Tabrizi M, et al. Oral scopolamine 
augmentation in moderate to severe major depressive disorder: a randomized, double-blind, 
placebo-controlled study. Journal of Clinical Psychiatry. 2012; 73:1428–1433. [PubMed: 
23146150] 

Kim HG, Kim KL. Decreased hippocampal cholinergic neurostimulating peptide precursor protein 
associated with stress exposure in rat brain by proteomic analysis. Journal of Neuroscience 
Research. 2007; 85:2898–2908. [PubMed: 17628502] 

Klein RC, Yakel JL. Functional somato-dendritic alpha7-containing nicotinic acetylcholine receptors 
in the rat basolateral amygdala complex. The Journal of Physiology. 2006; 576:865–872. 
[PubMed: 16931547] 

Bassi et al. Page 12

J Psychiatr Res. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Kong L, Chen K, Womer F, Jiang W, Luo X, Driesen N, et al. Sex differences of gray matter 
morphology in cortico-limbic-striatal neural system in major depressive disorder. J Psychiatr Res. 
2013; 47:733–739. [PubMed: 23453566] 

Lewis DA. The human brain revisited: opportunities and challenges in postmortem studies of 
psychiatric disorders. Neuropsychopharmacology. 2002; 26:143–154. [PubMed: 11790510] 

Lin LC, Lewis DA, Sibille E. A human-mouse conserved sex bias in amygdala gene expression related 
to circadian clock and energy metabolism. Mol Brain. 2011; 4:18. [PubMed: 21542937] 

Maki M, Matsukawa N, Yuasa H, Otsuka Y, Yamamoto T, Akatsu H, et al. Decreased expression of 
hippocampal cholinergic neurostimulating peptide precursor protein mRNA in the hippocampus in 
Alzheimer disease. Journal of Neuropathology & Experimental Neurology. 2002; 61:176–185. 
[PubMed: 11853019] 

Matsukawa N, Furuya Y, Ogura H, Ojika K. HCNP precursor protein transgenic mice display a 
depressive-like phenotype in old age. Brain Research. 2010; 1349:153–161. [PubMed: 20599825] 

McDonald AJ, Mascagni F. Neuronal localization of m1 muscarinic receptor immunoreactivity in the 
rat basolateral amygdala. Brain Structure and Function. 2010; 215:37–48. [PubMed: 20503057] 

McDonald AJ, Mascagni F. Neuronal localization of M2 muscarinic receptor immunoreactivity in the 
rat amygdala. Neuroscience. 2011; 196:49–65. [PubMed: 21875654] 

Mineur YS, Obayemi A, Wigestrand MB, Fote GM, Calarco CA, Li AM, et al. Cholinergic signaling 
in the hippocampus regulates social stress resilience and anxiety- and depression-like behavior. 
Proceedings of the National Academy of Sciences of the United States of America. 2013; 
110:3573–3578. [PubMed: 23401542] 

Mineur YS, Picciotto MR. Nicotine receptors and depression: revisiting and revising the cholinergic 
hypothesis. Trends in Pharmacological Sciences. 2010; 31:580–586. [PubMed: 20965579] 

Oda Y. Choline acetyltransferase: the structure, distribution and pathologic changes in the central 
nervous system. Pathology International. 1999; 49:921–937. [PubMed: 10594838] 

Ojika K, Kojima S, Ueki Y, Fukushima N, Hayashi K, Yamamoto M. Purification and structural 
analysis of hippocampal cholinergic neurostimulating peptide. Brain Research. 1992; 572:164–
171. [PubMed: 1611510] 

Ojika K, Tsugu Y, Mitake S, Otsuka Y, Katada E. NMDA receptor activation enhances the release of a 
cholinergic differentiation peptide (HCNP) from hippocampal neurons in vitro. Brain research. 
Developmental brain research. 1998; 106:173–180. [PubMed: 9555001] 

Otsuka Y, Ojika K. Demonstration and characterization of hippocampal cholinergic neurostimulating 
peptide (HCNP) processing enzyme activity in rat hippocampus. Neurochemical Research. 1996; 
21:369–376. [PubMed: 9139244] 

Palagini L, Baglioni C, Ciapparelli A, Gemignani A, Riemann D. REM sleep dysregulation in 
depression: state of the art. Sleep Medicine Reviews. 2013; 17:377–390. [PubMed: 23391633] 

Pongrac JL, Gibbs RB, Defranco DB. Estrogen-mediated regulation of cholinergic expression in basal 
forebrain neurons requires extracellular-signal-regulated kinase activity. Neuroscience. 2004; 
124:809–816. [PubMed: 15026121] 

Roni MA, Rahman S. Neuronal nicotinic receptor antagonist reduces anxiety-like behavior in mice. 
Neuroscience Letters. 2011; 504:237–241. [PubMed: 21964392] 

Rubin RT, Abbasi SA, Rhodes ME, Czambel RK. Growth hormone responses to low-dose 
physostigmine administration: functional sex differences (sexual diergism) between major 
depressives and matched controls. Psychol Med. 2003; 33:655–665. [PubMed: 12785467] 

Rubin RT, O’Toole SM, Rhodes ME, Sekula LK, Czambel RK. Hypothalamo-pituitary-adrenal 
cortical responses to low-dose physostigmine and arginine vasopressin administration: sex 
differences between major depressives and matched control subjects. Psychiatry Res. 1999; 89:1–
20. [PubMed: 10643873] 

Sagisaka T, Matsukawa N, Toyoda T, Uematsu N, Kanamori T, Wake H, et al. Directed neural lineage 
differentiation of adult hippocampal progenitor cells via modulation of hippocampal cholinergic 
neurostimulating peptide precursor expression. Brain Research. 2010; 1327:107–117. [PubMed: 
20206149] 

Bassi et al. Page 13

J Psychiatr Res. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Saricicek A, Esterlis I, Maloney KH, Mineur YS, Ruf BM, Muralidharan A, et al. Persistent beta2*-
nicotinic acetylcholinergic receptor dysfunction in major depressive disorder. The American 
Journal of Psychiatry. 2012; 169:851–859. [PubMed: 22772158] 

Schafer MK, Eiden LE, Weihe E. Cholinergic neurons and terminal fields revealed by 
immunohistochemistry for the vesicular acetylcholine transporter. II. The peripheral nervous 
system. Neuroscience. 1998; 84:361–376. [PubMed: 9539210] 

Sedivy JM. Phosphatidylenthanolamine Binding Protein aka Raf Kinase Inhibitor Protein: A Brief 
History of Its Discovery and the Remarkable Diversity of Biological Functions. For Immunopathol 
Dis Therap. 2011; 2:1–12.

Seminowicz DA, Mayberg HS, McIntosh AR, Goldapple K, Kennedy S, Segal Z, et al. Limbic-frontal 
circuitry in major depression: a path modeling metanalysis. Neuroimage. 2004; 22:409–418. 
[PubMed: 15110034] 

Sibille E, Wang Y, Joeyen-Waldorf J, Gaiteri C, Surget A, Oh S, et al. A molecular signature of 
depression in the amygdala. The American Journal of Psychiatry. 2009; 166:1011–1024. 
[PubMed: 19605536] 

Stan AD, Ghose S, Gao XM, Roberts RC, Lewis-Amezcua K, Hatanpaa KJ, et al. Human postmortem 
tissue: what quality markers matter? Brain Res. 2006; 1123:1–11. [PubMed: 17045977] 

Thomsen MS, Weyn A, Mikkelsen JD. Hippocampal alpha7 nicotinic acetylcholine receptor levels in 
patients with schizophrenia, bipolar disorder, or major depressive disorder. Bipolar Disorders. 
2011; 13:701–707. [PubMed: 22085484] 

Tohdoh N, Tojo S, Kimura M, Ishii T, Ojika K. Mechanism of expression of the rat HCNP precursor 
protein gene. Brain Research. Molecular Brain Research. 1997; 45:24–32. [PubMed: 9105667] 

Uematsu N, Matsukawa N, Kanamori T, Arai Y, Sagisaka T, Toyoda T, et al. Overexpression of 
hippocampal cholinergic neurostimulating peptide in heterozygous transgenic mice increases the 
amount of ChAT in the medial septal nucleus. Brain Research. 2009; 1305:150–157. [PubMed: 
19815004] 

Wang JC, Hinrichs AL, Stock H, Budde J, Allen R, Bertelsen S, et al. Evidence of common and 
specific genetic effects: association of the muscarinic acetylcholine receptor M2 (CHRM2) gene 
with alcohol dependence and major depressive syndrome. Hum Mol Genet. 2004; 13:1903–1911. 
[PubMed: 15229186] 

WHO. The Global Burden of Disease, 2004 Update. 2008. p. 1-146.

Zhang H, Tuckmantel W, Eaton JB, Yuen PW, Yu LF, Bajjuri KM, et al. Chemistry and behavioral 
studies identify chiral cyclopropanes as selective alpha4beta2-nicotinic acetylcholine receptor 
partial agonists exhibiting an antidepressant profile. Journal of Medicinal Chemistry. 2012; 
55:717–724. [PubMed: 22171543] 

Bassi et al. Page 14

J Psychiatr Res. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Research highlights

• Hippocampal Cholinergic Neurostimulating Peptide (HCNP) is upregulated in 

depression

• HCNP-pp expression is upregulated in the amygdala of female but not men in 

depression

• HCNP-pp expression is upregulated in the amygdala of stressed mice

• Findings are independent of changes in cholinergic-related genes
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Figure 1. 
mRNA expression of HCNP-pp in postmortem amygdala of men and women with MDD 

assessed by qPCR. a. HCNP-pp mRNA expression between MDD and control subjects 

(F=21,794, p<0.0001), using pH as cofactor. b. HCNP-pp mRNA expression between 

female MDD and control subjects (F=51.316, p<0.0001). c. HCNP-pp mRNA expression 

between male MDD and control subjects (non-significant). Error bars represent standard 

error.
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Figure 2. 
mRNA expression of cholinergic signaling-related genes in postmortem amygdala of 

controls and MDD subjects assessed by qPCR. mAChRs (1-4), nAChRs (α3, α4, α7), or 

AChE mRNA expression between MDD and control subjects (non-significant). Error bars 

represent standard error.
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Figure 3. 
mRNA expression of cholinergic signaling-related genes in postmortem amygdala of men 

and women assessed by qPCR. a. mAChRs (1, 2, 4), nAChRs (α3, α4, α7), or AChE mRNA 

expression between men and women in the control subjects (**, p<0.0001). b. mAChRs (1, 

2, 4), nAChRs (α3, α4, α7), or AChE mRNA expression between men and women in the 

MDD subjects (**, p<0.0001). Error bars represent standard error.
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Figure 4. 
mRNA expression of HCNP-pp in amygdala of mice exposed to UCMS and non-stressed 

controls assessed by qPCR. a. HCNP-pp mRNA expression between UCMS and control 

subjects (F=4.912, p=0.037). b. HCNP-pp mRNA expression between female and males 

UCMS and matched control subjects (n.s. = non-significant). Error bars represent standard 

error.
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Figure 5. 
mRNA expression of AChE in amygdala of mice exposed to UCMS and non-stressed 

controls assessed by qPCR. AChE mRNA expression between UCMS and control subjects 

(F=4.559, p=0.044). Error bars represent standard error.
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