148 research outputs found

    Magnetic Properties of FePt Nanoparticles Prepared by a Micellar Method

    Get PDF
    FePt nanoparticles with average size of 9 nm were synthesized using a diblock polymer micellar method combined with plasma treatment. To prevent from oxidation under ambient conditions, immediately after plasma treatment, the FePt nanoparticle arrays were in situ transferred into the film-growth chamber where they were covered by an SiO2 overlayer. A nearly complete transformation of L10 FePt was achieved for samples annealed at temperatures above 700 °C. The well control on the FePt stoichiometry and avoidance from surface oxidation largely enhanced the coercivity, and a value as high as 10 kOe was obtained in this study. An evaluation of magnetic interactions was made using the so-called isothermal remanence (IRM) and dc-demagnetization (DCD) remanence curves and Kelly–Henkel plots (ΔM measurement). The ΔM measurement reveals that the resultant FePt nanoparticles exhibit a rather weak interparticle dipolar coupling, and the absence of interparticle exchange interaction suggests no significant particle agglomeration occurred during the post-annealing. Additionally, a slight parallel magnetic anisotropy was also observed. The results indicate the micellar method has a high potential in preparing FePt nanoparticle arrays used for ultrahigh density recording media

    Tetrabenzoporphyrin and -mono-, - Cis -di- and tetrabenzotriazaporphyrin derivatives: Electrochemical and spectroscopic implications of meso CH Group replacement with nitrogen

    Get PDF
    Nonperipherally hexyl-substituted metal-free tetrabenzoporphyrin (2H-TBP, 1a) tetrabenzomonoazaporphyrin (2H-TBMAP, 2a), tetrabenzo-cis-diazaporphyrin (2H-TBDAP, 3a), tetrabenzotriazaporphyrin (2H-TBTAP, 4a), and phthalocyanine (2H-Pc, 5a), as well as their copper complexes (1b-5b), were synthesized. As the number of meso nitrogen atoms increases from zero to four, Îmax of the Q-band absorption peak becomes red-shifted by almost 100 nm, and extinction coefficients increased at least threefold. Simultaneously the blue-shifted Soret (UV) band substantially decreased in intensity. These changes were related to the relative electron-density of each macrocycle expressed as the group electronegativity sum of all meso N and CH atom groups, âχR. X-ray photoelectron spectroscopy differentiated between the three different types of macrocyclic nitrogen atoms (the Ninner, (NH)inner, and Nmeso) in the metal-free complexes. Binding energies of the Nmeso and Ninner,Cu atoms in copper chelates could not be resolved. Copper insertion lowered especially the cathodic redox potentials, while all four observed redox processes occurred at larger potentials as the number of meso nitrogens increased. Computational chemical methods using density functional theory confirmed 1b to exhibit a Cu(II) reduction prior to ring-based reductions, while for 2b, Cu(II) reduction is the first reductive step only if the nonperipheral substituents are hydrogen. When they are methyl groups, it is the second reduction process; when they are ethyl, propyl, or hexyl, it becomes the third reductive process. Spectro-electrochemical measurements showed redox processes were associated with a substantial change in intensity of at least two main absorbances (the Q and Soret bands) in the UV spectra of these compounds

    Confinement increases the lifetimes of hydroxyapatite precursors

    No full text
    The mineral component of bone is a carbonated, nonstoichiometric hydroxyapatite (calcium phosphate) that forms in nanometer confinement within collagen fibrils, the principal organic constituent of bone. We here employ a model system to study the effects of confinement on hydroxyapatite precipitation from solution under physiological conditions. In common with earlier studies of calcium carbonate and calcium sulfate precipitation, we find that confinement significantly prolongs the lifetime of metastable phases, here amorphous calcium phosphate (ACP) and octacalcium phosphate (OCP). The effect occurs at surprisingly large separations of up to 1 ÎĽm, and at 0.2 ÎĽm the lifetime of ACP is extended by at least an order of magnitude. The soluble additive poly(aspartic acid), which in bulk stabilizes ACP, appears to act synergistically with confinement to give a greatly enhanced stability of ACP. The reason for the extended lifetime appears to be different from that found with CaCO3 and CaSO4, and underscores both the variety of mechanisms whereby confinement affects the growth and transformation of solid phases, and the necessity to study a wide range of crystalline systems to build a full understanding of confinement effects. We suggest that in the case of ACP and OCP the extended lifetime of these metastable phases is chiefly due to a slower transport of ions between a dissolving metastable phase, and the more stable, growing phase. These results highlight the potential importance of confinement on biomineralization processes
    • …
    corecore