642 research outputs found
Boron adatom adsorption on graphene: A case study in computational chemistry methods for surface interactions
Though weak surface interactions and adsorption can play an important role in
plasma processing and materials science, they are not necessarily simple to
model. A boron adatom adsorbed on a graphene sheet serves as a case study for
how carefully one must select the correct technique from a toolbox of
computational chemistry methods. Using a variety of molecular dynamics
potentials and density functional theory functionals, we evaluate the
adsorption energy, investigate barriers to adsorption and migration, calculate
corresponding reaction rates, and show that a surprisingly high level of theory
may be necessary to verify that the system is described correctly
Self-Averaging Scaling Limits of Two-Frequency Wigner Distribution for Random Paraxial Waves
Two-frequency Wigner distribution is introduced to capture the asymptotic
behavior of the space-frequency correlation of paraxial waves in the radiative
transfer limits. The scaling limits give rises to deterministic transport-like
equations. Depending on the ratio of the wavelength to the correlation length
the limiting equation is either a Boltzmann-like integral equation or a
Fokker-Planck-like differential equation in the phase space. The solutions to
these equations have a probabilistic representation which can be simulated by
Monte Carlo method. When the medium fluctuates more rapidly in the longitudinal
direction, the corresponding Fokker-Planck-like equation can be solved exactly.Comment: typos correcte
Rectification of thermal fluctuations in ideal gases
We calculate the systematic average speed of the adiabatic piston and a
thermal Brownian motor, introduced in [Van den Broeck, Kawai and Meurs,
\emph{Microscopic analysis of a thermal Brownian motor}, to appear in Phys.
Rev. Lett.], by an expansion of the Boltzmann equation and compare with the
exact numerical solution.Comment: 18 page
Large Deviations Principle for a Large Class of One-Dimensional Markov Processes
We study the large deviations principle for one dimensional, continuous,
homogeneous, strong Markov processes that do not necessarily behave locally as
a Wiener process. Any strong Markov process in that is
continuous with probability one, under some minimal regularity conditions, is
governed by a generalized elliptic operator , where and are
two strictly increasing functions, is right continuous and is
continuous. In this paper, we study large deviations principle for Markov
processes whose infinitesimal generator is where
. This result generalizes the classical large deviations
results for a large class of one dimensional "classical" stochastic processes.
Moreover, we consider reaction-diffusion equations governed by a generalized
operator . We apply our results to the problem of wave front
propagation for these type of reaction-diffusion equations.Comment: 23 page
CONVERGENCE OF AMERICAN OPTION VALUES FROM DISCRETE- TO CONTINUOUS-TIME FINANCIAL MODELS 1
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75553/1/j.1467-9965.1994.tb00059.x.pd
The time to extinction for an SIS-household-epidemic model
We analyse a stochastic SIS epidemic amongst a finite population partitioned
into households. Since the population is finite, the epidemic will eventually
go extinct, i.e., have no more infectives in the population. We study the
effects of population size and within household transmission upon the time to
extinction. This is done through two approximations. The first approximation is
suitable for all levels of within household transmission and is based upon an
Ornstein-Uhlenbeck process approximation for the diseases fluctuations about an
endemic level relying on a large population. The second approximation is
suitable for high levels of within household transmission and approximates the
number of infectious households by a simple homogeneously mixing SIS model with
the households replaced by individuals. The analysis, supported by a simulation
study, shows that the mean time to extinction is minimized by moderate levels
of within household transmission
Cut Points and Diffusions in Random Environment
In this article we investigate the asymptotic behavior of a new class of
multi-dimensional diffusions in random environment. We introduce cut times in
the spirit of the work done by Bolthausen, Sznitman and Zeitouni, see [4], in
the discrete setting providing a decoupling effect in the process. This allows
us to take advantage of an ergodic structure to derive a strong law of large
numbers with possibly vanishing limiting velocity and a central limit theorem
under the quenched measure.Comment: 44 pages; accepted for publication in "Journal of Theoretical
Probability
Central Limit Theorem and Large Deviation Principle for Continuous Time Open Quantum Walks
International audienceOpen Quantum Walks (OQWs), originally introduced in [2], are quantum generalizations of classical Markov chains. Recently, natural continuous time models of OQW have been developed in [24]. These models, called Continuous Time Open Quantum Walks (CTOQWs), appear as natural continuous time limits of discrete time OQWs. In particular they are quantum extensions of continuous time Markov chains. This article is devoted to the study of homogeneous CTOQW on Z^d. We focus namely on their associated quantum trajectories which allow us to prove a Central Limit Theorem for the "position" of the walker as well as a Large Deviation Principle
Systemic Risk and Default Clustering for Large Financial Systems
As it is known in the finance risk and macroeconomics literature,
risk-sharing in large portfolios may increase the probability of creation of
default clusters and of systemic risk. We review recent developments on
mathematical and computational tools for the quantification of such phenomena.
Limiting analysis such as law of large numbers and central limit theorems allow
to approximate the distribution in large systems and study quantities such as
the loss distribution in large portfolios. Large deviations analysis allow us
to study the tail of the loss distribution and to identify pathways to default
clustering. Sensitivity analysis allows to understand the most likely ways in
which different effects, such as contagion and systematic risks, combine to
lead to large default rates. Such results could give useful insights into how
to optimally safeguard against such events.Comment: in Large Deviations and Asymptotic Methods in Finance, (Editors: P.
Friz, J. Gatheral, A. Gulisashvili, A. Jacqier, J. Teichmann) , Springer
Proceedings in Mathematics and Statistics, Vol. 110 2015
- …