261 research outputs found

    Astrocytic Ephrin-B1 Regulates Synapse Remodeling Following Traumatic Brain Injury.

    Get PDF
    Traumatic brain injury (TBI) can result in tissue alterations distant from the site of the initial injury, which can trigger pathological changes within hippocampal circuits and are thought to contribute to long-term cognitive and neuropsychological impairments. However, our understanding of secondary injury mechanisms is limited. Astrocytes play an important role in brain repair after injury and astrocyte-mediated mechanisms that are implicated in synapse development are likely important in injury-induced synapse remodeling. Our studies suggest a new role of ephrin-B1, which is known to regulate synapse development in neurons, in astrocyte-mediated synapse remodeling following TBI. Indeed, we observed a transient upregulation of ephrin-B1 immunoreactivity in hippocampal astrocytes following moderate controlled cortical impact model of TBI. The upregulation of ephrin-B1 levels in hippocampal astrocytes coincided with a decline in the number of vGlut1-positive glutamatergic input to CA1 neurons at 3 days post injury even in the absence of hippocampal neuron loss. In contrast, tamoxifen-induced ablation of ephrin-B1 from adult astrocytes in ephrin-B1(loxP/y)ERT2-Cre(GFAP) mice accelerated the recovery of vGlut1-positive glutamatergic input to CA1 neurons after TBI. Finally, our studies suggest that astrocytic ephrin-B1 may play an active role in injury-induced synapse remodeling through the activation of STAT3-mediated signaling in astrocytes. TBI-induced upregulation of STAT3 phosphorylation within the hippocampus was suppressed by astrocyte-specific ablation of ephrin-B1 in vivo, whereas the activation of ephrin-B1 in astrocytes triggered an increase in STAT3 phosphorylation in vitro. Thus, regulation of ephrin-B1 signaling in astrocytes may provide new therapeutic opportunities to aid functional recovery after TBI

    Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus

    Get PDF
    Here, using a genetic approach, we dissect the roles of EphB receptor tyrosine kinases in dendritic spine development. Analysis of EphB1, EphB2, and EphB3 double and triple mutant mice lacking these receptors in different combinations indicates that all three, although to varying degrees, are involved in dendritic spine morphogenesis and synapse formation in the hippocampus. Hippocampal neurons lacking EphB expression fail to form dendritic spines in vitro and they develop abnormal spines in vivo. Defective spine formation in the mutants is associated with a drastic reduction in excitatory glutamatergic synapses and the clustering of NMDA and AMPA receptors. We show further that a kinase-defective, truncating mutation in EphB2 also results in abnormal spine development and that ephrin-B2–mediated activation of the EphB receptors accelerates dendritic spine development. These results indicate EphB receptor cell autonomous forward signaling is responsible for dendritic spine formation and synaptic maturation in hippocampal neurons

    Development of a \u3cem\u3eMen’s Health\u3c/em\u3e Course for First-Year Undergraduates Using Culturally Responsive Teaching Strategies

    Get PDF
    Purpose A novel first-year experience course was developed using culturally responsive teaching strategies at an undergraduate liberal arts college in the southeastern USA to promote health advocacy and to provide students with an overview of male health. The course focuses on the biological, sociocultural, economic and gender influences that shape men\u27s health beliefs and practices. It also emphasizes health disparities in the USA among Black/African American men compared to other racial groups and intervention strategies to improve health outcomes. Design/methodology/approach The lecture and laboratory components of the course were designed as a blended learning environment with a modified flipped class model. Culturally relevant strategies guided the course design with three focus domains: academic success, cultural competence and sociopolitical consciousness. A community engagement model and service-learning activities were also incorporated in the design. The authors used course grades to gauge learning and implemented a survey to assess students\u27 perception of the knowledge gained in three realms: men\u27s health, health sciences and physical sciences. Findings This report describes the course design, highlights the value of using culturally responsive teaching strategies and service-learning projects to encourage students\u27 active learning. Course activity examples are discussed with student responses. The authors found that students\u27 perception of their knowledge in men\u27s health, health sciences and physical sciences increased and the students performed well in the course. Originality/value This is one of few biology courses in the nation that intentionally focuses on the unique health challenges of Black men, while empowering college students to develop culturally competent strategies to improve their health outcomes. The findings suggest that the students learned the material and that their perceived knowledge on men\u27s health increased. The authors urge other academic institutions and healthcare providers to consider implementation of similar courses in an effort to enhance male health equity

    The Perineuronal ‘Safety’ Net? Perineuronal Net Abnormalities in Neurological Disorders

    Get PDF
    Perineuronal nets (PNN) are extracellular matrix (ECM) assemblies that preferentially ensheath parvalbumin (PV) expressing interneurons. Converging evidence indicates that PV cells and PNN are impaired in a variety of neurological disorders. PNN development and maintenance is necessary for a number of processes within the CNS, including regulation of GABAergic cell function, protection of neurons from oxidative stress, and closure of developmental critical period plasticity windows. Understanding PNN functions may be essential for characterizing the mechanisms of altered cortical excitability observed in neurodegenerative and neurodevelopmental disorders. Indeed, PNN abnormalities have been observed in post-mortem brain tissues of patients with schizophrenia and Alzheimer’s disease. There is impaired development of PNNs and enhanced activity of its key regulator matrix metalloproteinase-9 (MMP-9) in Fragile X Syndrome, a common genetic cause of autism. MMP-9, a protease that cleaves ECM, is differentially regulated in a number of these disorders. Despite this, few studies have addressed the interactions between PNN expression, MMP-9 activity and neuronal excitability. In this review, we highlight the current evidence for PNN abnormalities in CNS disorders associated with altered network function and MMP-9 levels, emphasizing the need for future work targeting PNNs in pathophysiology and therapeutic treatment of neurological disorders

    Impact of Ultra High-risk Genetics on Real-world Outcomes of Transplant-eligible Multiple Myeloma Patients.

    Get PDF
    Refined prediction of early relapse following standard-of-care (SoC) autologous stem cell transplant (ASCT) in newly diagnosed multiple myeloma (NDMM) could inform real-world risk-stratified post-ASCT strategies. We investigated the impact of double hit genetics (≥2 adverse markers: t(4;14), t(14;16), t(14;20), gain(1q), del(17p)) on outcome in 139 NDMM patients who underwent SoC ASCT between January 2014 and October 2019 at our center. Double hit genetics were associated with a significantly shortened progression-free survival (hazard ratio [HR] = 4.27, P < 0.001) and overall survival (HR = 4.01, P = 0.03), and characterized most early relapses. Our results support the real-world utility of extended genetic profiling for improved risk prediction in NDMM

    Reusable Multielectrode Array Technique for Electroencephalography in Awake Freely Moving Mice

    Get PDF
    Translational comparison of rodent models of neurological and neuropsychiatric diseases to human electroencephalography (EEG) biomarkers in these conditions will require multisite rodent EEG on the skull surface, rather than local area electrocorticography (ECoG) or multisite local field potential (LFP) recording. We have developed a technique for planar multielectrode array (MEA) implantation on the mouse skull surface, which enables multisite EEG in awake and freely moving mice and reusability of the MEA probes. With this method, we reliably obtain 30-channel low-noise EEG from awake mice. Baseline and stimulus-evoked EEG recordings can be readily obtained and analyzed. For example, we have demonstrated EEG responses to auditory stimuli. Broadband noise elicits reliable 30-channel auditory event-related potentials (ERPs), and chirp stimuli induce phase-locked EEG responses just as in human sound presentation paradigms. This method is unique in achieving chronic implantation of novel MEA technology onto the mouse skull surface for chronic multisite EEG recordings. Furthermore, we demonstrate a reliable method for reusing MEA probes for multiple serial implantations without loss of EEG quality. This skull surface MEA methodology can be used to obtain simultaneous multisite EEG recordings and to test EEG biomarkers in diverse mouse models of human neurological and neuropsychiatric diseases. Reusability of the MEA probes makes it more cost-effective to deploy this system for various studies

    Urine microRNA Profiling Displays miR-125a Dysregulation in Children with Fragile X Syndrome

    Get PDF
    A triplet repeat expansion leading to transcriptional silencing of the FMR1 gene results in fragile X syndrome (FXS), which is a common cause of inherited intellectual disability and autism. Phenotypic variation requires personalized treatment approaches and hampers clinical trials in FXS. We searched for microRNA (miRNA) biomarkers for FXS using deep sequencing of urine and identified 28 differentially regulated miRNAs when 219 reliably identified miRNAs were compared in dizygotic twin boys who shared the same environment, but one had an FXS full mutation, and the other carried a premutation allele. The largest increase was found in miR-125a in the FXS sample, and the miR-125a levels were increased in two independent sets of urine samples from a total of 19 FXS children. Urine miR-125a levels appeared to increase with age in control subjects, but varied widely in FXS subjects. Should the results be generalized, it could suggest that two FXS subgroups existed. Predicted gene targets of the differentially regulated miRNAs are involved in molecular pathways that regulate developmental processes, homeostasis, and neuronal function. Regulation of miR-125a has been associated with type I metabotropic glutamate receptor signaling (mGluR), which has been explored as a treatment target for FXS, reinforcing the possibility that urine miR-125a may provide a novel biomarker for FXS

    Urine microRNA Profiling Displays miR-125a Dysregulation in Children with Fragile X Syndrome

    Get PDF
    A triplet repeat expansion leading to transcriptional silencing of the FMR1 gene results in fragile X syndrome (FXS), which is a common cause of inherited intellectual disability and autism. Phenotypic variation requires personalized treatment approaches and hampers clinical trials in FXS. We searched for microRNA (miRNA) biomarkers for FXS using deep sequencing of urine and identified 28 differentially regulated miRNAs when 219 reliably identified miRNAs were compared in dizygotic twin boys who shared the same environment, but one had an FXS full mutation, and the other carried a premutation allele. The largest increase was found in miR-125a in the FXS sample, and the miR-125a levels were increased in two independent sets of urine samples from a total of 19 FXS children. Urine miR-125a levels appeared to increase with age in control subjects, but varied widely in FXS subjects. Should the results be generalized, it could suggest that two FXS subgroups existed. Predicted gene targets of the differentially regulated miRNAs are involved in molecular pathways that regulate developmental processes, homeostasis, and neuronal function. Regulation of miR-125a has been associated with type I metabotropic glutamate receptor signaling (mGluR), which has been explored as a treatment target for FXS, reinforcing the possibility that urine miR-125a may provide a novel biomarker for FXS
    • …
    corecore