17 research outputs found

    Susceptible host availability modulates climate effects on dengue dynamics

    Full text link
    Experiments and models suggest that climate affects mosquito-borne disease transmission. However, disease transmission involves complex nonlinear interactions between climate and population dynamics, which makes detecting climate drivers at the population level challenging. By analysing incidence data, estimated susceptible population size, and climate data with methods based on nonlinear time series analysis (collectively referred to as empirical dynamic modelling), we identified drivers and their interactive effects on dengue dynamics in San Juan, Puerto Rico. Climatic forcing arose only when susceptible availability was high: temperature and rainfall had net positive and negative effects respectively. By capturing mechanistic, nonlinear and context-dependent effects of population susceptibility, temperature and rainfall on dengue transmission empirically, our model improves forecast skill over recent, state-of-the-art models for dengue incidence. Together, these results provide empirical evidence that the interdependence of host population susceptibility and climate drives dengue dynamics in a nonlinear and complex, yet predictable way.R35GM133439 - NIH HHS; DBI-1667584 - National Science Foundation; DEB-1655203 - National Science Foundation; 00028335 - Lenfest Foundation; Stanford University: Bing Fellowship in Honor of Paul Ehrlich, Stanford Data Science Scholars program, Lindsay Family E-IPER Fellowship, Illich-Sadowsky Interdisciplinary Graduate Fellowship, Terman Fellowship, King Center for Global Development seed grant; SERDP 15 RC-2509 - U.S. Department of Defense; University of California San Diego: McQuown Chair in Natural Sciences; DBI-1611767 - National Science Foundation; RAPID DEB-1640780 - National Science Foundation; R35GM133439 - NIH HHS; Hellman Foundation: Hellman Faculty Fellowship; Stanford Woods Institute for the Environment: Environmental Ventures Program; DEB-1518681 - National Science Foundation; R35 GM133439 - NIGMS NIH HHS; DEB-2011147 - National Science Foundationhttps://www.biorxiv.org/content/biorxiv/early/2020/10/19/2019.12.20.883363.full.pdfAccepted manuscrip

    Generalized Theorems for Nonlinear State Space Reconstruction

    Get PDF
    Takens' theorem (1981) shows how lagged variables of a single time series can be used as proxy variables to reconstruct an attractor for an underlying dynamic process. State space reconstruction (SSR) from single time series has been a powerful approach for the analysis of the complex, non-linear systems that appear ubiquitous in the natural and human world. The main shortcoming of these methods is the phenomenological nature of attractor reconstructions. Moreover, applied studies show that these single time series reconstructions can often be improved ad hoc by including multiple dynamically coupled time series in the reconstructions, to provide a more mechanistic model. Here we provide three analytical proofs that add to the growing literature to generalize Takens' work and that demonstrate how multiple time series can be used in attractor reconstructions. These expanded results (Takens' theorem is a special case) apply to a wide variety of natural systems having parallel time series observations for variables believed to be related to the same dynamic manifold. The potential information leverage provided by multiple embeddings created from different combinations of variables (and their lags) can pave the way for new applied techniques to exploit the time-limited, but parallel observations of natural systems, such as coupled ecological systems, geophysical systems, and financial systems. This paper aims to justify and help open this potential growth area for SSR applications in the natural sciences

    Distinguishing time-delayed causal interactions using convergent cross mapping

    Get PDF
    An important problem across many scientific fields is the identification of causal effects from observational data alone. Recent methods (convergent cross mapping, CCM) have made substantial progress on this problem by applying the idea of nonlinear attractor reconstruction to time series data. Here, we expand upon the technique of CCM by explicitly considering time lags. Applying this extended method to representative examples (model simulations, a laboratory predator-prey experiment, temperature and greenhouse gas reconstructions from the Vostok ice core, and longterm ecological time series collected in the Southern California Bight), we demonstrate the ability to identify different time-delayed interactions, distinguish between synchrony induced by strong unidirectional-forcing and true bidirectional causality, and resolve transitive causal chainsPeer reviewe

    Tracking and forecasting ecosystem interactions in real time

    No full text
    Evidence shows that species interactions are not constant but change as the ecosystem shifts to new states. Although controlled experiments and model investigations demonstrate how nonlinear interactions can arise in principle, empirical tools to track and predict them in nature are lacking. Here we present a practical method, using available time-series data, to measure and forecast changing interactions in real systems, and identify the underlying mechanisms. The method is illustrated with model data from a marine mesocosm experiment and limnologic field data from Sparkling Lake, WI, USA. From simple to complex, these examples demonstrate the feasibility of quantifying, predicting and understanding state-dependent, nonlinear interactions as they occur in situ and in real time—a requirement for managing resources in a nonlinear, non-equilibrium world

    Tracking and forecasting ecosystem interactions in real time.

    No full text
    Evidence shows that species interactions are not constant but change as the ecosystem shifts to new states. Although controlled experiments and model investigations demonstrate how nonlinear interactions can arise in principle, empirical tools to track and predict them in nature are lacking. Here we present a practical method, using available time-series data, to measure and forecast changing interactions in real systems, and identify the underlying mechanisms. The method is illustrated with model data from a marine mesocosm experiment and limnologic field data from Sparkling Lake, WI, USA. From simple to complex, these examples demonstrate the feasibility of quantifying, predicting and understanding state-dependent, nonlinear interactions as they occur in situ and in real time--a requirement for managing resources in a nonlinear, non-equilibrium world

    A Visual Analytics Approach for Ecosystem Dynamics based on Empirical Dynamic Modeling

    No full text
    An important approach for scientific inquiry across many disciplines involves using observational time series data to understand the relationships between key variables to gain mechanistic insights into the underlying rules that govern the given system. In real systems, such as those found in ecology, the relationships between time series variables are generally not static; instead, these relationships are dynamical and change in a nonlinear or state-dependent manner. To further understand such systems, we investigate integrating methods that appropriately characterize these dynamics (i.e., methods that measure interactions as they change with time-varying system states) with visualization techniques that can help analyze the behavior of the system. Here, we focus on empirical dynamic modeling (EDM) as a state-of-the-art method that specifically identifies causal variables and measures changing state-dependent relationships between time series variables. Instead of using approaches centered on parametric equations, EDM is an equation-free approach that studies systems based on their dynamic attractors. We propose a visual analytics system to support the identification and mechanistic interpretation of system states using an EDM-constructed dynamic graph. This work, as detailed in four analysis tasks and demonstrated with a GUI, provides a novel synthesis of EDM and visualization techniques such as brush-link visualization and visual summarization to interpret dynamic graphs representing ecosystem dynamics. We applied our proposed system to ecological simulation data and real data from a marine mesocosm study as two key use cases. Our case studies show that our visual analytics tools support the identification and interpretation of the system state by the user, and enable us to discover both confirmatory and new findings in ecosystem dynamics. Overall, we demonstrated that our system can facilitate an understanding of how systems function beyond the intuitive analysis of high-dimensional information based on specific domain knowledge
    corecore