1,470 research outputs found

    Learning Race and Racism While Learning: Experiences of International Students Pursuing Higher Education in the Midwestern United States

    Get PDF
    Researchers have documented how race and racism influence the college experiences of U.S. citizens. However, research on the ways that race and racism affect international students warrants similar attention. This qualitative study explored how international students learned about U.S. concepts of race and racism and how such concepts shaped their college experiences. The participating international college students learned about U.S. concepts of race and racism through media, relationships, formal education, and lived experiences. They defined these concepts in varying ways and had varying racial ideologies

    Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation

    Full text link
    The Cherenkov Telescope Array (CTA), the new-generation ground-based observatory for γ astronomy, provides unique capabilities to address significant open questions in astrophysics, cosmology, and fundamental physics. We study some of the salient areas of γ cosmology that can be explored as part of the Key Science Projects of CTA, through simulated observations of active galactic nuclei (AGN) and of their relativistic jets. Observations of AGN with CTA will enable a measurement of γ absorption on the extragalactic background light with a statistical uncertainty below 15% up to a redshift z=2 and to constrain or detect γ halos up to intergalactic-magnetic-field strengths of at least 0.3 pG . Extragalactic observations with CTA also show promising potential to probe physics beyond the Standard Model. The best limits on Lorentz invariance violation from γ astronomy will be improved by a factor of at least two to three. CTA will also probe the parameter space in which axion-like particles could constitute a significant fraction, if not all, of dark matter. We conclude on the synergies between CTA and other upcoming facilities that will foster the growth of γ cosmology

    The Invisible Flood: The Chemistry, Ecology, and Social Implications of Coastal Saltwater Intrusion

    Get PDF
    Saltwater intrusion is the leading edge of sea-level rise, preceding tidal inundation, but leaving its salty signature far inland. With climate change, saltwater is shifting landward into regions that previously have not experienced or adapted to salinity, leading to novel transitions in biogeochemistry, ecology, and human land uses. We explore these changes and their implications for climate adaptation in coastal ecosystems. Biogeochemical changes, including increases in ionic strength, sulfidation, and alkalinization, have cascading ecological consequences such as upland forest retreat, conversion of freshwater wetlands, nutrient mobilization, and declines in agricultural productivity. We explore the tradeoffs among land management decisions in response to these changes and how public policy should shape socioecological transitions in the coastal zone. Understanding transitions resulting from saltwater intrusion—and how to manage them—is vital for promoting coastal resilience

    Anticipating and adapting to the future impacts of climate change on the health, security and welfare of low elevation coastal zone (LECZ) communities in southeastern USA

    Get PDF
    Low elevation coastal zones (LECZ) are extensive throughout the southeastern United States. LECZ communities are threatened by inundation from sea level rise, storm surge, wetland degradation, land subsidence, and hydrological flooding. Communication among scientists, stake-holders, policy makers and minority and poor residents must improve. We must predict processes spanning the ecological, physical, social, and health sciences. Communities need to address linkages of (1) human and socioeconomic vulnerabilities; (2) public health and safety; (3) economic concerns; (4) land loss; (5) wetland threats; and (6) coastal inundation. Essential capabilities must include a network to assemble and distribute data and model code to assess risk and its causes, support adaptive management, and improve the resiliency of communities. Better communication of information and understanding among residents and officials is essential. Here we review recent background literature on these matters and offer recommendations for integrating natural and social sciences. We advocate for a cyber-network of scientists, modelers, engineers, educators, and stakeholders from academia, federal state and local agencies, non-governmental organizations, residents, and the private sector. Our vision is to enhance future resilience of LECZ communities by offering approaches to mitigate hazards to human health, safety and welfare and reduce impacts to coastal residents and industrie

    High-speed, scanned laser structuring of multi-layered eco/bioresorbable materials for advanced electronic systems

    Get PDF
    Physically transient forms of electronics enable unique classes of technologies, ranging from biomedical implants that disappear through processes of bioresorption after serving a clinical need to internet-of-things devices that harmlessly dissolve into the environment following a relevant period of use. Here, we develop a sustainable manufacturing pathway, based on ultrafast pulsed laser ablation, that can support high-volume, cost-effective manipulation of a diverse collection of organic and inorganic materials, each designed to degrade by hydrolysis or enzymatic activity, into patterned, multi-layered architectures with high resolution and accurate overlay registration. The technology can operate in patterning, thinning and/or cutting modes with (ultra)thin eco/bioresorbable materials of different types of semiconductors, dielectrics, and conductors on flexible substrates. Component-level demonstrations span passive and active devices, including diodes and field-effect transistors. Patterning these devices into interconnected layouts yields functional systems, as illustrated in examples that range from wireless implants as monitors of neural and cardiac activity, to thermal probes of microvascular flow, and multi-electrode arrays for biopotential sensing. These advances create important processing options for eco/bioresorbable materials and associated electronic systems, with immediate applicability across nearly all types of bioelectronic studies

    Integrated ocean, earth, and atmospheric observations for resilience planning in Hampton roads, Virginia

    Get PDF
    Building flood resilience in coastal communities requires a precise understanding of the temporal and spatial scales of inundation and the ability to detect and predict changes in flooding. In Hampton Roads, the Intergovernmental Pilot Project\u27s Scientific Advisory Committee recommended an integrated network of ocean, earth, and atmospheric data collection from both private and public sector organizations that engage in active scientific monitoring and observing. Since its establishment, the network has grown to include monitoring of water levels, land subsidence, wave measurements, current measurements, and atmospheric conditions. High-resolution land elevation and land cover data sets have also been developed. These products have been incorporated into a number of portals and integrated tools to help support resilience planning. Significant challenges to building the network included establishing consistent data standards across organizations to allow for the integration of the data into multiple, unique products and funding the expansion of the network components. Recommendations to the network development in Hampton Roads include the need to continue to support and expand the publicly available network of sensors; enhance integration between ocean, earth, and atmospheric networks; and improve shallow water bathymetry data used in spatial flooding models

    Improving SIEM for critical SCADA water infrastructures using machine learning

    Get PDF
    Network Control Systems (NAC) have been used in many industrial processes. They aim to reduce the human factor burden and efficiently handle the complex process and communication of those systems. Supervisory control and data acquisition (SCADA) systems are used in industrial, infrastructure and facility processes (e.g. manufacturing, fabrication, oil and water pipelines, building ventilation, etc.) Like other Internet of Things (IoT) implementations, SCADA systems are vulnerable to cyber-attacks, therefore, a robust anomaly detection is a major requirement. However, having an accurate anomaly detection system is not an easy task, due to the difficulty to differentiate between cyber-attacks and system internal failures (e.g. hardware failures). In this paper, we present a model that detects anomaly events in a water system controlled by SCADA. Six Machine Learning techniques have been used in building and evaluating the model. The model classifies different anomaly events including hardware failures (e.g. sensor failures), sabotage and cyber-attacks (e.g. DoS and Spoofing). Unlike other detection systems, our proposed work helps in accelerating the mitigation process by notifying the operator with additional information when an anomaly occurs. This additional information includes the probability and confidence level of event(s) occurring. The model is trained and tested using a real-world dataset

    Application of multiple testing procedures for identifying relevant comorbidities, from a large set, in traumatic brain injury for research applications utilizing big health-administrative data

    Get PDF
    Background: Multiple testing procedures (MTP) are gaining increasing popularity in various fields of biostatistics, especially in statistical genetics. However, in injury surveillance research utilizing the growing amount and complexity of health-administrative data encoded in the International Statistical Classification of Diseases and Related Health Problems 10th Revision (ICD-10), few studies involve MTP and discuss their applications and challenges. Objective: We aimed to apply MTP in the population-wide context of comorbidity preceding traumatic brain injury (TBI), one of the most disabling injuries, to find a subset of comorbidity that can be targeted in primary injury prevention. Methods: In total, 2,600 ICD-10 codes were used to assess the associations between TBI and comorbidity, with 235,003 TBI patients, on a matched data set of patients without TBI. McNemar tests were conducted on each 2,600 ICD-10 code, and appropriate multiple testing adjustments were applied using the Benjamini-Yekutieli procedure. To study the magnitude and direction of associations, odds ratios with 95% confidence intervals were constructed. Results: Benjamini-Yekutieli procedure captured 684 ICD-10 codes, out of 2,600, as codes positively associated with a TBI event, reducing the effective number of codes for subsequent analysis and comprehension. Conclusion: Our results illustrate the utility of MTP for data mining and dimension reduction in TBI research utilizing big health-administrative data to support injury surveillance research and generate ideas for injury prevention. Copyright © 2022 Jana, Sutton, Mollayeva, Chan, Colantonio and Escobar
    corecore