11 research outputs found

    Collecting system–specific deletion of Kcnj10 predisposes for thiazide- and low-potassium diet–induced hypokalemia

    Full text link
    The basolateral potassium channel KCNJ10 (Kir4.1), is expressed in the renal distal convoluted tubule and controls the activity of the thiazide-sensitive sodium chloride cotransporter. Loss-of-function mutations of KCNJ10 cause EAST/SeSAME syndrome with salt wasting and severe hypokalemia. KCNJ10 is also expressed in the principal cells of the collecting system. However, its pathophysiological role in this segment has not been studied in detail. To address this, we generated the mouse model AQP2cre:Kcnj10flox/flox with a deletion of Kcnj10 specifically in the collecting system (collecting system-Kcnj10-knockout). Collecting system-Kcnj10-knockout mice responded normally to standard and high potassium diet. However, this knockout exhibited a higher kaliuresis and lower plasma potassium than control mice when treated with thiazide diuretics. Likewise, collecting systemKcnj10-knockout displayed an inadequately high kaliuresis and renal sodium retention upon dietary potassium restriction. In this condition, these knockout mice became hypokalemic due to insufficient downregulation of the epithelial sodium channel (ENaC) and the renal outer medullary potassium channel (ROMK) in the collecting system. Consistently, the phenotype of collecting system-Kcnj10-knockout was fully abrogated by ENaC inhibition with amiloride and ameliorated by genetic inactivation of ROMK in the collecting system. Thus, KCNJ10 in the collecting system contributes to the renal control of potassium homeostasis by regulating ENaC and ROMK. Hence, impaired KCNJ10 function in the collecting system predisposes for thiazide and low potassium diet-induced hypokalemia and likely contributes to the pathophysiology of renal potassium loss in EAST/SeSAME syndrome

    Protective Effects of PACAP in a Rat Model of Diabetic Neuropathy

    No full text
    Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide with a widespread occurrence and diverse effects. PACAP has well-documented neuro- and cytoprotective effects, proven in numerous studies. Among others, PACAP is protective in models of diabetes-associated diseases, such as diabetic nephropathy and retinopathy. As the neuropeptide has strong neurotrophic and neuroprotective actions, we aimed at investigating the effects of PACAP in a rat model of streptozotocin-induced diabetic neuropathy, another common complication of diabetes. Rats were treated with PACAP1-38 every second day for 8 weeks starting simultaneously with the streptozotocin injection. Nerve fiber morphology was examined with electron microscopy, chronic neuronal activation in pain processing centers was studied with FosB immunohistochemistry, and functionality was assessed by determining the mechanical nociceptive threshold. PACAP treatment did not alter body weight or blood glucose levels during the 8-week observation period. However, PACAP attenuated the mechanical hyperalgesia, compared to vehicle-treated diabetic animals, and it markedly reduced the morphological signs characteristic for neuropathy: axon–myelin separation, mitochondrial fission, unmyelinated fiber atrophy, and basement membrane thickening of endoneurial vessels. Furthermore, PACAP attenuated the increase in FosB immunoreactivity in the dorsal spinal horn and periaqueductal grey matter. Our results show that PACAP is a promising therapeutic agent in diabetes-associated complications, including diabetic neuropathy

    Effect of PACAP treatment on kidney morphology and cytokine expression in rat diabetic nephropathy

    No full text
    Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide, exerting diverse effects. One of its frequently examined functions is cell protection, which is achieved mainly via inhibiting apoptotic, inflammatory and oxidative processes. All its three receptors (PAC1, VPAC1, VPAC2) are expressed in the kidney and PACAP has been shown to have protective effects against different renal pathologies. Diabetic nephropathy is the leading cause of end stage renal disease. The aim of the present study was to investigate the possible ameliorative effect of PACAP in streptozotocin-induced diabetic nephropathy and to evaluate its anti-inflammatory effect in this model. Diabetes was induced by a single intravenous injection of streptozotocin (65mg/kg) in male Wistar rats. PACAP-treated animals were administered ip. 20”g PACAP every second day, while untreated animals were given vehicle. Kidneys were removed after 8-weeks survival. Besides the complex histological analysis (glomerular PAS positive area/glomerulus area, tubular damage, arteriolar hyalinosis), expression of several cytokines was evaluated by cytokine array and Luminex assay. Histological analysis revealed severe diabetic changes in kidneys of control diabetic animals (glomerular PAS-positive area expansion, tubular damage, Armanni-Ebstein phenomenon). PACAP treatment significantly diminished the damage. Diabetic kidneys showed significant cytokine activation compared to their healthy controls. PACAP was effective in downregulation of several cytokines including CINC-1, TIMP-1, LIX, MIG, s-ICAM. To conclude, PACAP is effective in ameliorating diabetic nephropathy at least partly through its well-known anti-inflammatory effect. These results raise the opportunity for the use of PACAP as a possible therapeutic or preventive method in treating the complications of diabetes

    Specific disruption of calcineurin-signaling in the distal convoluted tubule impacts the transcriptome and proteome, and causes hypomagnesemia and metabolic acidosis

    Get PDF
    Adverse effects of calcineurin inhibitors (CNI), such as hypertension, hyperkalemia, acidosis, hypomagnesemia and hypercalciuria, have been linked to dysfunction of the distal convoluted tubule (DCT). To test this, we generated a mouse model with an inducible DCT-specific deletion of the calcineurin regulatory subunit B alpha (CnB1-KO). Three weeks after CnB1 deletion, these mice exhibited hypomagnesemia and acidosis, but no hypertension, hyperkalemia or hypercalciuria. Consistent with the hypomagnesemia, CnB1-KO mice showed a downregulation of proteins implicated in DCT magnesium transport, including TRPM6, CNNM2, SLC41A3 and parvalbumin but expression of calcium channel TRPV5 in the kidney was unchanged. The abundance of the chloride/bicarbonate exchanger pendrin was increased, likely explaining the acidosis. Plasma aldosterone levels, kidney renin expression, abundance of phosphorylated sodium chloride-cotransporter and abundance of the epithelial sodium channel were similar in control and CnB1-KO mice, consistent with a normal sodium balance. Long-term potassium homeostasis was maintained in CnB1-KO mice, but in-vivo and ex-vivo experiments indicated that CnB1 contributes to acute regulation of potassium balance and sodium chloride-cotransporter. Tacrolimus treatment of control and CnB1-KO mice demonstrated that CNI-related hypomagnesemia is linked to impaired calcineurinsignaling in DCT, while hypocalciuria and hyponatremia occur independently of CnB1 in DCT. Transcriptome and proteome analyses of isolated DCTs demonstrated that CnB1 deletion impacts the expression of several DCTspecific proteins and signaling pathways. Thus, our data support a critical role of calcineurin for DCT function and provide novel insights into the pathophysiology of CNI side effects and involved molecular players in the DCT

    Caloric restriction confers persistent anti-oxidative, pro-angiogenic, and anti-inflammatory effects and promotes anti-aging miRNA expression profile in cerebromicrovascular endothelial cells of aged rats

    No full text
    In rodents, moderate caloric restriction (CR) without malnutrition exerts significant cerebrovascular protective effects, improving cortical microvascular density and endothelium-dependent vasodilation, but the underlying cellular mechanisms remain elusive. To elucidate the persisting effects of CR on cerebromicrovascular endothelial cells (CMVECs), primary CMVECs were isolated from young (3 month old) and aged (24 month old) ad libitum (AL)-fed and aged CR F344xBN rats. We found an age-related increase in cellular and mitochondrial oxidative stress, which is prevented by CR. Expression and transcriptional activity of Nrf2 are both significantly reduced in aged CMVECs, whereas CR prevents age-related Nrf2 dysfunction. Expression of miR-144 was up-regulated in aged CMVECs and overexpression of miR-144 significantly decreased expression of Nrf2 in cells derived from both young animals and aged CR rats. Overexpression of a miR-144 antagomir in aged CMVECs significantly decreases expression of miR-144 and up-regulates Nrf2. We found that CR prevents age-related impairment of angiogenic processes, including cell proliferation, adhesion to collagen and formation of capillary-like structures and inhibits apoptosis in CMVECs. CR also exerts significant anti-inflammatory effects, preventing age-related increases in the transcriptional activity of NF-kappaB and age-associated pro-inflammatory shift in the endothelial secretome. Characterization of CR-induced changes in miRNA expression suggests that they likely affect several critical functions in endothelial cell homeostasis. The predicted regulatory effects of CR-related differentially expressed miRNAs in aged CMVECs are consistent with the anti-aging endothelial effects of CR observed in vivo. Collectively, we find that CR confers persisting anti-oxidative, pro-angiogenic and anti-inflammatory cellular effects preserving a youthful phenotype in rat cerebromicrovascular endothelial cells, suggesting that through these effects CR may improve cerebrovascular function and prevent vascular cognitive impairment
    corecore