59 research outputs found

    Analytical study of radiative casson nanoliquid flow with heat absorption

    Get PDF
    The divergence of thermally radiative MHD flow of a Casson nanofluid over a stretching paper alongside heat absorption. The governing non linear equations are remodeled into a nonlinear ODE’s. The HAM is adopted to find the series solution. The changes of pertinent parameters are analyzed with diagrams and tables. The fluid velocity is controlled by suction and it develops with injection. The local Nusselt number rapidly suppresses with increasing the magnetic field parameter in heat generation case

    Newtonian Heating Effects of Oldroyd-B Liquid Flow with Cross-Diffusion and Second Order Slip

    Get PDF
    The current study highlights the Newtonian heating and second-order slip velocity with cross-diffusion effects on Oldroyd-B liquid flow. The modified Fourier heat flux is included in the energy equation system. The present problem is modeled with the physical governing system. The complexity of the governing system was reduced to a nonlinear ordinary system with the help of suitable transformations. A homotopy algorithm was used to validate the nonlinear system. This algorithm was solved via MATHEMATICA software. Their substantial aspects are further studied and reported in detail. We noticed that the influence of slip velocity order two is lower than the slip velocity order one

    Computational analysis of third-grade liquid flow with cross diffusion effects: application to entropy modeling

    Get PDF
    The key goal of this current study is to analyze the entropy generation with cross diffusion effects. The third-grade type non-Newtonian fluid model is used in this study. The current flow problem is modelled with stretching plate. Modified Fourier heat flux is replaced the classical heat flux. The appropriate transformation is availed to convert the basic boundary layers equations into ODEs and then verified by homotopy algorithm. The consequences of various physical quantities on temperature, velocity, entropy and concentration profile are illustrated graphically

    Numerical Computation of Ag/Al<sub>2</sub>O<sub>3</sub> Nanofluid over a Riga Plate with Heat Sink/Source and Non-Fourier Heat Flux Model

    No full text
    The main goal of the current research is to investigate the numerical computation of Ag/Al2O3 nanofluid over a Riga plate with injection/suction. The energy equation is formulated using the Cattaneo–Christov heat flux, non-linear thermal radiation, and heat sink/source. The leading equations are non-dimensionalized by employing the suitable transformations, and the numerical results are achieved by using the MATLAB bvp4c technique. The fluctuations of fluid flow and heat transfer on porosity, Forchheimer number, radiation, suction/injection, velocity slip, and nanoparticle volume fraction are investigated. Furthermore, the local skin friction coefficient (SFC), and local Nusselt number (LNN) are also addressed. Compared to previously reported studies, our computational results exactly coincided with the outcomes of the previous reports. We noticed that the Forchheimer number, suction/injection, slip, and nanoparticle volume fraction factors slow the velocity profile. We also noted that with improving rates of thermal radiation and convective heating, the heat transfer gradient decreases. The 40% presence of the Hartmann number leads to improved drag force by 14% and heat transfer gradient by 0.5%. The 20% presence of nanoparticle volume fraction leads to a decrement in heat transfer gradient for 21% of Ag nanoparticles and 18% of Al2O3 nanoparticles

    Soret and Dufour effects on viscoelastic boundary layer flow over a stretching surface with convective boundary condition with radiation and chemical reaction

    No full text
    In this article, we investigate the double diffusive ow of a viscoelastic uid on a stretching paper with convective boundary condition under the inuence of thermal-diffusion and diffusion-Thermo effects, thermal radiation, internal heat generation or absorption, chemical reaction, and thermal radiation. The governing boundary layer equations are analytically solved by using Homotopy Analysis Method (HAM). Variations of the velocity, concentration, and temperature profiles for different values of physical parameters are graphically displayed and discussed. Numerical results of the local Sherwood number and the local Nusselt number are also tabulated. It is observed that the local Nusselt number increases on increasing the radiation parameter. The local Sherwood number increases on increasing the chemical reaction parameter

    Exploration of Darcy–Forchheimer Flows of Non-Newtonian Casson and Williamson Conveying Tiny Particles Experiencing Binary Chemical Reaction and Thermal Radiation: Comparative Analysis

    No full text
    This discussion intends to scrutinize the Darcy–Forchheimer flow of Casson–Williamson nanofluid in a stretching surface with non-linear thermal radiation, suction and heat consumption. In addition, this investigation assimilates the influence of the Brownian motion, thermophoresis, activation energy and binary chemical reaction effects. Cattaneo–Christov heat-mass flux theory is used to frame the energy and nanoparticle concentration equations. The suitable transformation is used to remodel the governing PDE model into an ODE model. The remodeled flow problems are numerically solved via the BVP4C scheme. The effects of various material characteristics on nanofluid velocity, nanofluid temperature and nanofluid concentration, as well as connected engineering aspects such as drag force, heat, and mass transfer gradients, are also calculated and displayed through tables, charts and figures. It is noticed that the nanofluid velocity upsurges when improving the quantity of Richardson number, and it downfalls for larger magnitudes of magnetic field and porosity parameters. The nanofluid temperature grows when enhancing the radiation parameter and Eckert number. The nanoparticle concentration upgrades for larger values of activation energy parameter while it slumps against the reaction rate parameter. The surface shear stress for the Williamson nanofluid is greater than the Casson nanofluid. There are more heat transfer gradient losses the greater the heat generation/absorption parameter and Eckert number. In addition, the local Sherwood number grows when strengthening the Forchheimer number and fitted rate parameter

    Thermally Radiative Darcy–Forchheimer Flow of <i>Cu</i>/<i>Ag</i> Nanoliquid in Water Past a Heated Stretchy Sheet with Magnetic and Viscous Dissipation Impacts

    No full text
    This communication predominately discusses the rheological attributes of the Darcy–Forchheimer flow of a nanoliquid over a stretchy sheet with a magnetic impact. The present model considers the two diverse nanoparticles, such as Cu and Ag, and water as a base liquid. The heat equation accounts for the consequences of thermal radiation and a nonlinear heat sink/source when evaluating heat transmission phenomena. The current mechanical system is represented by higher-order PDEs, which are then remodeled into nonlinear higher-order ODEs that employ appropriate symmetry variables. The current mathematical systems are numerically computed by implementing the bvp4c technique. The characteristic attitudes of the related pertinent factors on the non-dimensional profiles are sketched via the figures, tables, and charts. The analysis predicts that the speed of the nanoliquid particles becomes slower when there is more presence of a magnetic field and injection/suction parameters. The growing amount of radiation is also pointed out, and the Eckert number corresponds to enriching the thermal profile

    Thermal Behavior of the Time-Dependent Radiative Flow of Water-Based CNTs/Au Nanoparticles Past a Riga Plate with Entropy Optimization and Multiple Slip Conditions

    No full text
    This communication deliberates the time-reliant and Darcy–Forchheimer flow of water-based CNTs/gold nanoparticles past a Riga plate. In addition, nonlinear radiation, heat consumption and multiple slip conditions are considered. Entropy generation is computed through various flow parameters. A suitable transformation with symmetry variables is invoked to remodel the governing mathematical flow models into the ODE equations. The homotopy analysis scheme and MATLAB bvp4c method are imposed to solve the reduced ODE equations analytically and numerically. The impact of sundry flow variables on nanofluid velocity, nanofluid temperature, skin friction coefficient, local Nusselt number, entropy profile and Bejan number are computed and analyzed through graphs and tables. It is found that the nanofluid velocity is reduced by greater porosity and slip factors. The thickness of the thermal boundary layer increases with increasing radiation, temperature ratio, and heat consumption/generation parameters. The surface drag force is reduced when there is a higher Forchheimer number, unsteadiness parameter and porosity parameter. The amount of entropy created is proportional to the radiation parameter, porosity parameter and Reynolds number. The Bejan number profile increases with radiation parameter, heat consumption/generation parameter and the Forchheimer number

    Comparative Analysis of Darcy–Forchheimer Radiative Flow of a Water-Based Al<sub>2</sub>O<sub>3</sub>-Ag/TiO<sub>2</sub> Hybrid Nanofluid over a Riga Plate with Heat Sink/Source

    No full text
    The behavior of the Darcy–Forchheimer flow of a double-hybrid nanofluid toward a Riga plate with radiation and heat source/sink effects is investigated. The two different hybrid nanofluids, (Al2O3 and Ag) and (Al2O3 and TiO2) with a base fluid (H2O), are considered. The governing flow models with accompanying boundary constraints are reshaped into non-linear ODEs by applying the symmetry variables. The reshaped ODEs are numerically computed using Bvp4c in Matlab and the ND solver in Mathematica. The impact of the emerging parameters on the heat transfer, surface shear stress, temperature and velocity profile is scrutinized and expressed in a tabular and graphical structure. It is noticed that the upsurge of the Hartmann number leads to an improvement in the velocity profile. The velocity declines when enriching the porosity parameter. The radiation and Biot number lead to strengthening the temperature profile. The surface shear stress exalts due to a larger modified Hartman number. The radiation and unsteady parameters are downturns in the heat transfer gradient
    corecore