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Abstract. The current study highlights the Newtonian heating and
second-order slip velocity with cross-diffusion effects on Oldroyd-B liquid
flow. The modified Fourier heat flux is included in the energy equation
system. The present problem is modeled with the physical governing sys-
tem. The complexity of the governing system was reduced to a nonlinear
ordinary system with the help of suitable transformations. A homotopy
algorithm was used to validate the nonlinear system. This algorithm was
solved via MATHEMATICA software. Their substantial aspects are fur-
ther studied and reported in detail. We noticed that the influence of slip
velocity order two is lower than the slip velocity order one.

Keywords: Oldroyd-B liquid · Second order slip · Cross diffusion
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1 Introduction

Heat transport through non-Newtonian fluids is the significant study in recent
times because of its industrial and engineering applications. Oldroyd-B fluid
is one of the types of non-Newtonian fluids. This fluid contains viscoelastic
behaviour. Loganathan et al. [1] exposed the 2nd-order slip phenomena of
Oldroyd-B fluid flow with cross diffusion impacts. Hayat et al. [2] performed
the modified heat flux impacts with multiple chemical reactions on Oldroyd-B
liquid flow. Eswaramoorthi et al. [3] studied the influence of cross-diffusion on
viscoelastic liquid induced by an unsteady stretchy sheet. Elanchezhian et al. [4]
examined the important facts of swimming motile microorganisms with stratifi-
cation effects on Oldroyd-B fluid flow. Loganathan and Rajan [5] explored the
entropy effects of Williamson nanoliquid caused by a stretchy plate with partial
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slip and convective surface conditions. The innovative research articles on non-
Newtonian fluid flow with different geometry’s and situations are studied in ref’s
[6–10].

As far as our survey report the Newtonian heating effects along with slip
order two on Oldroyd-B liquid flow is not examined yet. The present study
incorporates the cross diffusion and modified Fourier heat flux into the problem.
The eminent homotopy technique [11–13] is employed for computing the ODE
system and the results are reported via graphs.

2 Modeling

We have constructed the Oldroyd-B liquid flow subjected to below stated
aspects:

1. Incompressible flow
2. Second-order velocity slip
3. Magnetic field
4. Binary chemical reaction
5. Stretching plate with linear velocity.
6. Cross-diffusion effects
7. Modified Fourier heat flux

Figure 1 represents graphical illustration of physical problem. The governing
equations are stated below:

Fig. 1. Schematic diagram
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u(→ 0), v(→ 0), T (→ T∞), C(→ C∞) as y(→ ∞), (6)

where A1 (= relaxation time), A2 (= retardation time), B0 (= constant magnetic
field), a (= stretching rate), cp (= specific heat), c∞ (= ambient concentration),
cw (= fluid wall concentration), Dm (= diffusion coefficient), k (= thermal con-
ductivity), T∞ (= ambient temperature), Tw (= convective surface temperature),
u, v (= Velocity components), uw (= velocity of the sheet), λ1 (= first order slip
velocity factor), λ2 (= second order slip velocity factor), μ (= kinematic vis-
cosity), ρ (= density), σ (= electrical conductivity), γ (= dimensionless thermal
relaxation time). The energy equation updated with Cattaneo-Christov heat flux
is defined as:
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From the above transformations we derive the ODE system as follows,
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f ′′2 − ff iv

)
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(
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with boundary points

f(0) = 0, f ′(0) = 1 + ε1f
′′(0) + ε2f

′′′(0), θ′(0) = −Nw(1 + θ(0)), φ(0) = 1
f ′(∞) = 0, θ(∞) = 0, φ(∞) = 0, (12)
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3 Solution Methodology

We using the homotopy technique for validate the convergence of the nonlinear
systems. The basic guesses and linear operators are defined as:

f0 = ηe−η +
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where Dk(k = 1 − −7) are constants. The special solutions are
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In Fig. 2 the straight lines are named as h-curves. The permissible range of
hf , hθ & hφ are −1.7 ≤ hf ≤ −0.6,−1.2 ≤ hθ ≤ −0.2,−1.2 ≤ hφ ≤ −0.2,
respectively. Order of convergent series is depicted in Table 1. Table 2 depicts
f ′′(0) in the special case M = β = 0. It is noted that the f ′′(0) values are well
matched with the previous reports [14–16].
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Fig. 2. h-curves for hf , hθ, hφ

Fig. 3. f
′
(η) for various range of parameters (α, β, ε1, ε2).

4 Results and Discussion

Physical Characteristics of rising parameters versus, Concentration φ(η), velocity
f(η) and temperature θ(η) are investigated in Figs. 3, 4 and 5. Figure 3 depicted
the velocity distribution f(η) for different range of α, β, ε1, ε2. It is noted that
the velocity reduces for β and ε1, while it increases for α and ε2. The temperature
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Fig. 4. θ(η) for various range of parameters (γ, Rd, ε1, ε2, Nw and DF ).

Fig. 5. φ(η) for various range of parameters (Cr and Sr).

Table 1. Approximations for convergence

Order −f ′′(0) −θ′(0) −φ′(0)

2 1.8126 0.1532 1.1289

7 1.6331 0.1979 1.1558

12 1.6273 0.2059 1.1606

17 1.6274 0.2068 1.1616

22 1.6274 0.2068 1.1616

27 1.6274 0.2068 1.1616

35 1.6274 0.2068 1.1616

distribution θ(η) for different range of γ, Rd, ε1, ε2, Nw and DF are sketched
in Fig. 4. Thermal boundary layer decays with increasing the γ and ε2 values.
Larger values of Rd, ε1 and DF boosts the temperature distribution θ(η). Figure 5
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Table 2. Validation of f ′′(0) in the specific case for various α when β = M = 0

α Ref. [14] Ref. [15] Ref. [16] Present

0.0 1.000 0.9999963 1.00000 1.00000

0.2 1.0549 1.051949 1.05189 1.05189

0.4 1.10084 1.101851 1.10190 1.10190

0.6 1.0015016 1.150162 1.15014 1.15014

0.8 1.19872 1.196693 1.19671 1.19671

shows the influence on φ(η) for various values of Cr and Sr. These parameters
shows the opposite effect in φ(η).

5 Conclusion

The salient outcomes the flow problem is given below:

1. Retardation time parameter (β) is inversely proportional to the relaxation
time parameter (α) is in velocity profile.

2. Thermal boundary layer enhances due to increasing the Rd,Nw, DF whereas
it decays for higher ε1 and γ.

3. Higher Soret number values enhance the solutal boundary thickness.
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