15 research outputs found

    Estimación de un indicador de la resistencia de los acuíferos españoles a las sequías

    Full text link
    [ES] Las descargas de las aguas subterráneas a los ríos y manantiales son función de las recargas y de las propiedades hidrodinámicas de los acuíferos. En la mayoría de los casos, el agotamiento de un acuífero puede representarse por la suma de varias exponenciales decrecientes, siendo los coeficientes de recesión de estas exponenciales función de las propiedades hidrodinámicas del acuífero, de sus dimensiones y de la naturaleza de la conexión río-acuífero. En muchas ocasiones es suficiente con tomar una única exponencial, lo que se correspondería con el modelo de transferencia recarga-descarga para acuíferos conectados con ríos o manantiales, denominado modelo unicelular. El parámetro de recesión de este modelo ha sido obtenido recientemente con motivo de la elaboración del Libro Blanco del Agua en España (LBAE) en todas las unidades hidrogeológicas delimitadas en el territorio peninsular español. Un concepto muy utilizado para representar el comportamiento diferido de un acuífero y de su resistencia a las sequías es el de tiempo de respuesta, que está estrechamente relacionado con el parámetro de recesión del modelo unicelular. Un tiempo de respuesta característico de un acuífero es el tiempo de semivaciado, que en este artículo se ha obtenido en las unidades hidrogeoló- gicas delimitadas en España a partir del parámetro de recesión. Por otra parte, y siguiendo la tabla de equivalencias utilizada en Francia para caracterizar la resistencia a la sequía a partir del tiempo de semivaciado, se han categorizado todos los acuíferos, analizando los resultados e indicando la necesidad de adaptar la clasificación francesa a una más acorde con las características de mayor irregularidad hidrológica existentes en España. Finalmente se han mostrado algunos ejemplos que ilustran el grado de resistencia a la sequía en distintas cuencas en España.[EN] Groundwater discharges to rivers and springs are a function of recharges and hydrodynamic aquifer properties. In most cases, the aquifer recession can be represented by the sum of several decreasing exponential, being the recession coefficients of these exponential laws a function of the aquifer hydrodynamic properties, its dimensions and the characteristics of the aquifer-river connection. In many cases it is enough to take only one exponential, which would correspond with recharge-discharge transfer model for aquifers connected to rivers and springs, called unicellular model. The recession parameter of this model has been recently obtained for Spanish hydrogeological units in the framework of the works carried out for the elaboration of the White Paper on Water in Spain. A very used concept to represent the aquifer delaying behaviour and its resistance to droughts is the response time, very related with the recession parameter of unicellular model. A characteristic response time of an aquifer is the called half emptying time, which in this article has been obtained for the Spanish hydrogeological units from recession parameter data. On the other hand, and taking into consideration the classification used in France to characterise the resistance to droughts from the half emptying time, Spanish hydrogeological units have been categorised, analysing the results obtained and showing the need to adapt the French classification to take into account the greatest hydrological irregularity existing in Spain. Finally, some examples illustrating the degree of resistance to drought in several Spanish basin are shown.Este artículo ha sido posible gracias a los trabajos realizados en el Centro de Estudios Hidrográficos del CEDEX de asistencia técnica al Ministerio de Medio Ambiente para la elaboración del Libro Blanco del Agua en España.Estrela Monreal, T. (2000). Estimación de un indicador de la resistencia de los acuíferos españoles a las sequías. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. 94(2):173-181. http://hdl.handle.net/10251/98048S17318194

    Dessalement en Espagne. Passé, présent et futur

    Full text link
    [Otros] Ce qui suit est un résumé de l'évolution du dessalement en Espagne, couvrant plus d'un demi-siècle d'histoire. Ce qui a commencé comme une solution pour résoudre les pénuries d'eau occasionnelles dans les îles où les ressources naturelles en eaux de surface et souterraines étaient rares, a gagné en pertinence avec les progrès technologiques, en réduisant les coûts de production et en minimisant l'impact sur l'environnement. Mais il y a quinze ans, le rythme normal de l'histoire s'est inversé avec la construction soudaine d'un nombre important d'usines de dessalement. La rapidité, et parfois la précipitation, impliquée dans de nombreuses décisions, a entraîné un déséquilibre entre les différents acteurs impliqués. Le temps et surtout les progrès technologiques ont clarifié la situation et la plupart des usines de dessalement construites ont réussi à trouver leur place, justifiant ainsi l'investissement réalisé. Mais il reste encore des étapes à franchir, notamment celle de l'intégration de ces installations dans les systèmes communs d'exploitation des ressources en eau. À cet égard, les consommateurs doivent accepter que les usines de dessalement en concurrence avec les ressources en eau traditionnelles améliorent considérablement la garantie d'approvisionnement et constituent en fait une nouvelle assurance de l'eau qui a effectivement un coût. Mais aujourd'hui et surtout à l'avenir, le dessalement en Espagne joue et continuera à jouer un rôle essentiel, en particulier dans la région sud-est de la Méditerranée et dans certaines des îles les plus touristiques. Ce qui suit est une brève histoire.[EN] A summary of the evolution of desalination in Spain, spanning over half a century of history, follows. What started as a solution to resolve occasional water shortages in islands where natural surface and ground water resources were scarce, has gained more relevance with technological advancements, less expensive production costs and at the same time minimizing the impact on the environment. But fifteen years ago, the normal pace of history underwent an about-turn with the sudden construction of a significant number of desalination plants. The speed, and on occasions the haste, involved in many of the decisions, brought about some imbalance between the different players that were involved. Time, and above all, technological advancement have clarified the situation, and most of the desalination plants that were built have managed to find their place, thus justifying the investment that was made. But there are still some stages to address, particularly that of integrating these plants in the joint water resource operation systems. In this regard, consumers must accept that desalination plants competing with traditional water resources, greatly improve the guarantee of supply, and in fact act as a new water insurance that, indeed, has a cost. Today however, and particularly in the future, desalination in Spain plays and will continue to play an essential role, especially in the southeast Mediterranean region and in some of the more touristic islands. The following is a brief history.Cabrera Marcet, E.; Estrela Monreal, T.; Lora-García, J. (2019). Desalination in Spain. Past, present and future. La Houille Blanche. (1):85-92. https://doi.org/10.1051/lhb/2019011S85921Cala A. (2013) - Spain's Desalination Ambitions Unravel. The New York Times, October 2013. Special Report: Business of Green.CEH (Centro De Estudios Hidrográficos) (2017) - Informe de Evaluación del Impacto del Cambio Climático en los Recursos Hídricos y Sequías en España (2015-2017), Madrid.EC (European Commission) (2016) - Energy prices and costs in Europe. Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Brussels 30.11.2016.EurEau (2017) - Europe's water in figures. An overview of the European drinking water and wastewater sectors. 2017 edition. The European Federation of National Water Associations.Lapuente, E. (2012). Full cost in desalination. A case study of the Segura River Basin. Desalination, 300, 40-45. doi:10.1016/j.desal.2012.06.002MCT (Mancomunidad de los Canales del Taibilla) (2013) - Gestión del servicio 2013. Ministerio de Agricultura, Alimentación y Medio Ambiente. MAC. Cartagena (Murcia).Ruiz N. (2005) - La salinidad del agua de riego y del suelo. IFAPA Centro Alameda del Obispo, Consejería de Innovación, Ciencia y Empresa. Junta de Andalucía. Sevilla.Torres M. (2008) - Evolución de los procesos de desalación en España. Libro La desalación en España. Aguas de la Cuenca Mediterránea, 2008. Depósito legal: M-27347-2008. Madrid., I , 81-113.Urrea M (2007) - Notas sobre tecnologías y costes de la desalación. Comunicación personal.Zarzo, D., Campos, E., & Terrero, P. (2012). Spanish experience in desalination for agriculture. Desalination and Water Treatment, 51(1-3), 53-66. doi:10.1080/19443994.2012.708155Zarzo D. (2017) - La desalación española, ejemplo mundial. Retema , 202 septiembre/octubre, 2017.Zarzuela A. (2018) - Desalinización y consumo energético. Conferencia AQUAEnergy: de la huella del carbono a la huella hídrica. Fundación Jorge Juan. Madrid, Noviembre 2018

    Measures required to reach the nitrate objectives in groundwater based on a long-term nitrate model for large river basins (Jucar, Spain)

    Full text link
    [EN] Nitrate pollution, primarily in groundwater (GW), has been one of major water pollution problems in Europe over the last 30 years. Specially, Mediterranean areas (semi-arid zones) are more vulnerable to nitrate pollution, as in these areas a small excess of nitrogen produce higher nitrate concentrations than in more humid countries because the aquifer recharge is minor. A large number of GW bodies in the Júcar River Basin District (RBD) (43.000 km2), located in Spain, has nitrate concentrations above 50 mg/L. The Water Framework Directive (WFD) sets out the goal of good status for the water bodies of the European Union,which also implies compliance with the Nitrates Directive. The River Basin Authorities (RBAs) must define the measures needed to reach the environmental objectives in the River BasinManagement Plans (RBMPs), considering the long time-lag of aquifers is decisive in the measures effectiveness. By means of nitrogen cycle simulation in the river basin district and with the help of the monthly distributed PATRICAL model, the Júcar RBA has defined the measures to be applied and the exemptions to reach the objectives in GW in relation to nitrate pollution. Both, model and methodology are useful for other river basins to define measures. The total nitrogen inputs in the Júcar RBD amounts to 180,000 tN/year, which represents a nitrogen surplus of 80,000 tN/year and a pressure of 58.5 kgN/year/ha-crop. Around 3/4 ofGWbodies have currently the good status while the remaining of GW bodies could reach the good status during following hydrological planning cycles through the implementation ofmodernized irrigation systems that include fertigation -the use of fertilizers in the water for irrigation. The implementation of this scenario involves increasing efficiency in fertilizer application, in order to reduce nitrogen losses from slightly under a half to <1/3.Pérez-Martín, MÁ.; Estrela Monreal, T.; Amo-Merino, PD. (2016). Measures required to reach the nitrate objectives in groundwater based on a long-term nitrate model for large river basins (Jucar, Spain). The Science of The Total Environment. 566:122-133. doi:10.1016/j.scitotenv.2016.04.206S12213356

    Analysing hydropower production in stressed river basins within the SEEA-W approach: the Jucar River case

    Full text link
    [EN] Hydropower generation represents an important contribution to meeting the challenges of today's increasing world energy needs. It uses about 44% of water in Europe, and it is the main user of water in most OECD countries. However, in most cases, the energy sector is not a water consumer. The largest part of these withdrawals is immediately returned into the environment, being able to be used by other sectors, which is its most prominent characteristic. In order to understand the water-energy nexus and the challenges that the environment and other water users face, the European Commission proposed the use of water accounts in order to measure the influence of each water user, infrastructure and management decision to the total economic value of water resources in a given basin. In this sense, the SEEA-W is the most well-known approach of hybrid accounting as it provides a standard approach to compare results between different regions. This research analyses hydropower production in the Jucar River Basin (Spain), which is currently water-stressed by consumptive demands, within the SEEA-W approach. The results demonstrate that the SEEA-W approach needs some improvement in order to represent hydropower production properly.We would also like to express our gratitude to the Jucar River Basin Authority - Confederacion Hidrografica del Jucar (Spanish Ministry of Agriculture, Food and Environment) for providing data to develop this study. The authors wish to thank the Spanish Ministry of Economy and Competitiveness for its financial support through the NUTEGES project (CGL2012-34978) and ERAS project (CTM2016-77804-P). We also value the support provided by the European Community's Seventh Framework Program in financing the projects ENHANCE (FP7-ENV-2012, 308438), AGUAMOD (Interreg V-B Sudoe 2016), SWICCA (ECMRWF-Copernicus-FA 2015/C3S_441-LOT1/SMHI) and IMPREX (H2020-WATER-2014-2015, 641811).Solera Solera, A.; Pedro Monzonis, M.; Andreu Álvarez, J.; Estrela Monreal, T. (2018). Analysing hydropower production in stressed river basins within the SEEA-W approach: the Jucar River case. Hydrology Research. 49(2):528-538. https://doi.org/10.2166/nh.2017.278S528538492Andreu, J., Capilla, J., & Sanchís, E. (1996). AQUATOOL, a generalized decision-support system for water-resources planning and operational management. Journal of Hydrology, 177(3-4), 269-291. doi:10.1016/0022-1694(95)02963-xDimova, G., Tzanov, E., Ninov, P., Ribarova, I., & Kossida, M. (2014). Complementary Use of the WEAP Model to Underpin the Development of SEEAW Physical Water Use and Supply Tables. Procedia Engineering, 70, 563-572. doi:10.1016/j.proeng.2014.02.062Dincer, I. (2000). Renewable energy and sustainable development: a crucial review. Renewable and Sustainable Energy Reviews, 4(2), 157-175. doi:10.1016/s1364-0321(99)00011-8Estrela, T., Pérez-Martin, M. A., & Vargas, E. (2012). Impacts of climate change on water resources in Spain. Hydrological Sciences Journal, 57(6), 1154-1167. doi:10.1080/02626667.2012.702213Lehner, B., Czisch, G., & Vassolo, S. (2005). The impact of global change on the hydropower potential of Europe: a model-based analysis. Energy Policy, 33(7), 839-855. doi:10.1016/j.enpol.2003.10.018Molden, D., & Sakthivadivel, R. (1999). Water Accounting to Assess Use and Productivity of Water. International Journal of Water Resources Development, 15(1-2), 55-71. doi:10.1080/07900629948934Monteiro, C., Ramirez-Rosado, I. J., & Fernandez-Jimenez, L. A. (2014). Short-term forecasting model for aggregated regional hydropower generation. Energy Conversion and Management, 88, 231-238. doi:10.1016/j.enconman.2014.08.017Pedro-Monzonís, M., Jiménez-Fernández, P., Solera, A., & Jiménez-Gavilán, P. (2016). The use of AQUATOOL DSS applied to the System of Environmental-Economic Accounting for Water (SEEAW). Journal of Hydrology, 533, 1-14. doi:10.1016/j.jhydrol.2015.11.034Pedro-Monzonís, M., Solera, A., Ferrer, J., Andreu, J., & Estrela, T. (2016). Water accounting for stressed river basins based on water resources management models. Science of The Total Environment, 565, 181-190. doi:10.1016/j.scitotenv.2016.04.161Pellicer-Martínez, F., & Martínez-Paz, J. M. (2016). Grey water footprint assessment at the river basin level: Accounting method and case study in the Segura River Basin, Spain. Ecological Indicators, 60, 1173-1183. doi:10.1016/j.ecolind.2015.08.032Pereira-Cardenal, S. J., Madsen, H., Arnbjerg-Nielsen, K., Riegels, N., Jensen, R., Mo, B., … Bauer-Gottwein, P. (2014). Assessing climate change impacts on the Iberian power system using a coupled water-power model. Climatic Change, 126(3-4), 351-364. doi:10.1007/s10584-014-1221-1Pérez-Martín, M. A., Estrela, T., Andreu, J., & Ferrer, J. (2014). Modeling Water Resources and River-Aquifer Interaction in the Júcar River Basin, Spain. Water Resources Management, 28(12), 4337-4358. doi:10.1007/s11269-014-0755-3Scherer, L., & Pfister, S. (2016). Global water footprint assessment of hydropower. Renewable Energy, 99, 711-720. doi:10.1016/j.renene.2016.07.02

    La evaluación de los recursos hídricos en el Libro Blanco del Agua en España

    Get PDF
    [ES] En el presente artículo se describe brevemente el modelo hidrológico distribuido utilizado en el Libro Blanco del Agua en España para la evaluación de los recursos hídricos en régimen natural. Se tiene la intención de presentar en sucesivos números de esta Revista otros instrumentos o procedimientos específicamente desarrollados para el Libro Blanco que se estima pueden presentar interés técnico o científico. El objetivo de este artículo, y de los posibles artículos posteriores, es describir estos trabajos con un nivel de detalle propio de una revista especializada, que no se consideró procedente alcanzar en el Libro Blanco por su orientación eminentemente divulgativa.Se desea hacer una mención especial en este artículo a Javier Álvarez, del Centro de Estudios Hidrográficos del CEDEX, por su generosa dedicación a este trabajo, y a Andrés Sahuquillo, Catedrático del Departamento de Ingeniería Hidráulica y Medio Ambiente de la Universidad Politécnica de Valencia, por su colaboración en algunos aspectos de la modelación relacionados con las aguas subterráneas.Estrela Monreal, T.; Cabezas Calvo-Rubio, F.; Estrada Lorenzo, F. (1999). La evaluación de los recursos hídricos en el Libro Blanco del Agua en España. Ingeniería del Agua. 6(2):125-138. https://doi.org/10.4995/ia.1999.2781SWORD12513862Abbott, M.B.; Bathurst J.C. et al, (1986) An Introduction to the European hydrological System - System hydrologique european, SHE, 1: History and phylosophy of a phisically-based distributed modelling system. Journal of Hydrology, 87 (1986) 45-59.Burnash, R.J.C.; Ferral, R.L. and McGuire, R.A. (1973) A Generalized Streamflow Simulation System: Conceptual Modelling for Digital Computers U.S. Department of Commerce, California.Chairat, S. and J.W. Delleur, (1993) Integrating a phisically based hydrological model with GRASS. International Conference on application of GIS in hydrology and water resource management. HYDROGIS. IAHS Publication n° 211. Pages 143-150. Vienna.Crawford, N.A. and R.K. Linsley, (1966) Digital Simulation in hydrology; the Stanford Watershed Simulation Model IV. Technical Report no. 39. Department of Civil Engineering, Stanford University. Stanford. Calif.DHI. (1985) Introduction to the SHE. European Hydrologic System. Danish Hydraulic Institute.Estrela, T. y L. Quintas, (1996a) A distributed hydrological model for water resources assessment in large basins. Proceedings of 1st International Conference on Rivertech 96. IWRA. Vol 2, pp 861-868. Chicago, USA.Estrela, T. y Quintas, L., (1996b) El sistema integrado de modelización precipitación - aportación SIMPA. Revista de Ingeniería Civil, n° 104, páginas 43-52. CEDEX - Ministerio de Fomento, 1996MIMAM, (1998) El Libro Blanco del Agua en España. Ministerio de Medio Ambiente. Diciembre. Madrid, España.Ruiz, J.M., (1998) Desarrollo de un modelo hidrológico conceptual distribuido de simulación continua integrado con un SIG. Tesis doctoral. Universidad Politécnica de Valencia.Témez, J.R, (1977) Modelo matemático de transformación-Aportación. ASINEL.Van Deursen, J.C.J. Kwadijk, (1993) RHINEFLOW: an integrated GIS water balance model for the river Rhine W.P.A. International Conference on application of GIS in hydrology and water resource management. HYDROGIS. IAHS Publication n° 211. Pages 507-518. Vienn

    North Atlantic Oscillation as a Cause of the Hydrological Changes in the Mediterranean (Jucar River, Spain)

    Full text link
    [EN] Significant changes in the Jucar River Basin District's hydrology in the Mediterranean side of Spain, have been observed during last decades. A statistical change-point in the year 1980 was detected in the basins' hydrological series in the main upper river, Jucar and Tuna basins. In the study scope are, the North Atlantic Oscillation (NAO) is linked with the winter precipitations in the Upper Basins, which are here responsible for the major part of streamflow. So changes in the rainfall has an important effect in the natural river flows. The statistical analysis detected a change at NAO's seasonal pattern, what means a considerable reduction of winter rainfalls in the Upper River basins located in the inland zone which is simultaneously the water collection and reservoirs area (a - 40% of water resources availability since 1980). Hydro-meteorological data and a Water Balance Model, Patrical, have been used to assess these water resources' reduction. Results points out to the change in the Basin's precipitation pattern in the inland areas (upper basins), associated to Atlantic weather patterns, as the main cause, while it has not been detected in the coastal areas. All these changes implies water stress for water resources planning, management and allocation, where more than 5.2 million people and irrigation of 390,000 ha are served, joint to the time variability, an important territorial imbalance exists between resources and demands. Thus, in the main upper basins, with the biggest streamflow's reductions, locate the largest reservoirs in terms of water resources collection and reserves.The authors would like to thank the Jucar RBD (Spanish Ministry of Environment) and the Confederacion Hidrografica del Jucar (Jucar River Basin Authority - RBA) for their cooperation in the compilation of this paper. The language revision of this paper was funded by the Universitat Politecnica de Valencia, Spain.Gómez Martínez, G.; Pérez-Martín, MÁ.; Estrela Monreal, T.; Amo-Merino, PD. (2018). North Atlantic Oscillation as a Cause of the Hydrological Changes in the Mediterranean (Jucar River, Spain). Water Resources Management. 32(8):2717-2734. doi:10.1007/s11269-018-1954-0S27172734328Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol 6:661–675Bayazit M (2015) Nonstationarity of Hydrological Records and Recent Trends in Trend Analysis: A State-of-the-art Review. Environ Process 2:527–542. https://doi.org/10.1007/s40710-015-0081-7Bindoff NL, Stott PA, Allen MR, Gillett N, Gutzler D, Hansingo K, Hegerl G, Hu Y, Jain S, Overland J, Perlwitz J, Sebbari R, Zhang X (2013) Detection and attribution of climate change: From global to regional. In: Mokhov II, Stocker TF, Qin D, et al. (eds), Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge; New York, pp. 867–952CEDEX (2009) Mapa de caudales máximos. Centro de Estudios y Experimentaciones CEDEX. Ministerio de Medio Ambiente y Medio Rural y Marino, MadridChiew FHS, McMahon TA (1993) Detection of trend or change in annual flow of Australian rivers. Int J Climatol 13:643–653. https://doi.org/10.1002/joc.3370130605CLC1990 Corine Land Cover (1990) Directorate-General for Environment. European Environment Agency (EEA)CLC2000 Corine Land Cover (2000) Directorate-General for Environment. European Environment Agency (EEA). Published 1 January 2002Chirivella V, Capilla JE, Pérez MA (2015) Modelling Regional Impacts of Climate Change on Water Resources: the Júcar Basin, Spain. Hydrol Sci J. https://doi.org/10.1080/02626667.2013.866711CHJ 2005 Provisional Art. 5 Report Pursuant to the Water Framework Directive. Júcar River Basin Authority (Confederación Hidrográfica del Júcar), Ministry of Environment, SpainCHJ (2015) Júcar RB Management Plan 2015_2021. Júcar RBA (Demarcación hidrográfica del Júcar). Confederación Hidrográfica del Júcar. Ministry of Environment, MadridDu T, Xiong L, Xu C-Y, Gippel CJ, Guo S, Liu P (2015) Return period and risk analysis of nonstationary low-flow series under climate change. J Hydrol 527:234–250. https://doi.org/10.1016/j.jhydrol.2015.04.041EEA (European Environment Agency), 2003. Indicator Factsheet WQ01c. Available online, URL: http://www.eea.europa.eu/data-and-maps/indicators/water-exploitation-indexEl Adlouni S, Ouarda TBMJ, Zhang X, Roy R, Bobee B (2007) Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resour Res 43:W03410. https://doi.org/10.1029/2005WR004545Estrela T, Pérez-Martín MA, Vargas E (2012) Impacts of Climate Change on Water Resources in Spain. Hydrol Sci J 57(6):1154–1167 https://doi.org/10.1080/02626667.2012.702213Ferrer J, Pérez-Martín MA, Jiménez S, Estrela T, Andreu J (2012) GIS based models for water quantity and quality assessment in the Júcar River Basin, Spain, including climate change effects. Sci Total Environ 440:42–59. https://doi.org/10.1016/j.scitotenv.2012.08.032García-Ruiz JM, López-Moreno JI, Vicente-Serrano SM, Lasanta-Martínez T, Beguería S (2011) Mediterranean water resources in a global change scenario. Earth-Sci Rev 105(2011):121–139Hegerl G, Zwiers F (2011) Use of models in detection and attribution of climate change. Wiley Interdiscip Rev Clim Chang 2(4):570–591. https://doi.org/10.1002/wcc.121)HURRELL (2016) North Atlantic Oscillation (NAO) INDEX (STATION-BASED) https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-basedHurrell JW, Deser C (2009) North Atlantic climate variability: The role of the North Atlantic Oscillation. J Mar Syst 78(1):28–41Kendall MG (1975) Rank Correlation Measures. Charles Griffin, LondonLivingston EH (2004) Who Was Student and Why Do We Care So Much about His t-Test? J Surg Res 118:58–65. https://doi.org/10.1016/j.jss.2004.02.003López-Bustins JA, Martín-Vide J, Sánchez-Lorenzo A (2008) Iberia winter rainfall trends based upon changes in teleconnection and circulation patterns. Glob Planet Chang 63(2008):171–176Lorenzo-Lacruz J, Vicente-Serrano SM, López-Moreno JI, Morán-Tejeda E, Zabalza J (2012) Recent trends in Iberian streamflows (1945–2005). J Hydrol 414–415(2012):463–475Martín-Vide J, Lopez Bustins JA (2006) The Western Mediterranean Oscillation and Rainfall in the Iberian Peninsula. Int J Climatol 26(11):1455–1475Merz B, Vorogushyn S, Uhlemann S, Delgado J, Hundecha Y (2012) HESS Opinions More efforts and scientific rigour are needed to attribute trends in flood time series. Hydrol Earth Syst Sci 16(5):1379–1387. https://doi.org/10.5194/hess-16-1379-2012Miao W, Chiou P (2008) Confidence intervals for the difference between two means. Comput Stat Data Anal 52(2008):2238–2248. https://doi.org/10.1016/j.csda.2007.07.017Milly PC, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaier DP (2008) Stationary is dead: Whither water management? J Sci 318:573–574Morán-Tejeda E, López-Moreno JI, Ceballos-Barbancho A, Vicente-Serrano SM (2011) River regimes and recent hydrological changes in the Duero basin (Spain). J Hydrol 404(2011):241–258Morán-Tejeda E, Ceballos-Barbancho A, Llorente-Pinto JM, López-Moreno JI (2012) Land-cover changes and recent hydrological evolution in the Duero Basin (Spain). Reg Environ Chang 12:17–33. https://doi.org/10.1007/s10113-011-0236-7Moraes JM, Pellegrino HQ, Ballester MV, Martinelli LA, Victoria R, Krusche AV (1998) Trends in hydrological parameters of southern Brazilian watershed and its relation to human induced changes. Water Resour Manag 12:295–311. https://doi.org/10.1023/A:1008048212420Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans Am Soc Agric Biol Eng 50(3):885–900. https://doi.org/10.13031/2013.23153Nash JE, Sutcliffe, JV (1970) River flow forecasting through conceptual models part I — A discussion of principles. 10(3):282-290. https://doi.org/10.1016/0022-1694(70)90255-6National Academies of Sciences, Engineering, and Medicine (2016) Attribution of Extreme Weather Events in the Context of Climate Change. National Academies Press, Washington, D.C. https://doi.org/10.17226/21852Pajares-Candela A. 2002. Modelación cuasidistribuida de los recursos hídricos y establecimiento de zonas hidroclimáticamente afines en el ámbito de la Confederación Hidrográfica del Júcar. Escuela de Caminos Canales y Puertos, Universidad Politécnica de ValenciaPérez-Martín MA, Estrela T, Andreu J, Ferrer J (2014) Modeling Water Resources and River-Aquifer Interaction in the Júcar River Basin, Spain. Water Resour Manag 28:4337–4358. https://doi.org/10.1007/s11269-014-0755-3Perreault L, Hache M, Slivitsky M, Bobee B (1999) Detection of changes in precipitation and runoff over eastern Canada and US using a Bayesian approach. Stoch Env Res Risk A 13:201–216. https://doi.org/10.1007/s004770050039Pettit AN (1979) A non-parametric approach to the change-point problem. Appl Stat 28:126–135Pinto JG, Raible CC (2012) Past and recent changes in the North Atlantic oscillation. WIREs Clim Change 2012(3):79–90. https://doi.org/10.1002/wcc.150Rasmussen P (2001) Bayesian estimation of change points using the general linear model. Water Resour Res 37:2723–2731. https://doi.org/10.1029/2001WR000311Reeves J, Chen J, Wang XL, Lund R, Lu Q (2007) A Review and Comparison of Changepoint Detection Techniques for Climate Data. J Appl Meteorol Climatol. https://doi.org/10.1175/JAM2493.1Satterthwaite FE (1946) An approximate distribution of estimates of variance components. Biom Bull 2:110–114Senatore A et al 2011 Regional climate change projections and hydrological impact analysis for a Mediterranean basin in Southern Italy. Alfonso Senatore, Giuseppe Mendicino, Gerhard Smiatekb, Harald Kunstmann. a Dipartimento di Difesa del Suolo, Università della Calabria, P.te P. Bucci 41b, 87036 Rende (CS), Italy. b Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Kreuzeckbahnstrasse 19, 82467 Garmisch-Partenkirchen, Germany. J Hydrol 399 (1–2):70–92Huang S, Liu D Huang Q, Chen Y (2016) Contributions of climate variability and human activities to the variation of runoff in the Wei River Basin, China. ISSN: 0262–6667 (Print) 2150–3435 (Online) JournalStott PA, Stone DA, Allen MR (2004) Human contribution to the European heatwave of 2003. Nature 432:610–614Stott PA, Christidis N, Otto FEL, Sun Y, Vanderlinden J-P, van Oldenborgh GJ, Vautard R, von Storch H, Walton P, Yiou P, Zwiers FW (2016) Attribution of extreme weather and climate-related events. Wiley Interdiscip Rev Clim Chang 7(1):23–41. https://doi.org/10.1002/wcc.380Strupczewski WG, Kaczmarek Z (2001) Non-stationary approach to at-site flood frequency modeling II. Weighted least squares estimation. J Hydrol 248:143–151. https://doi.org/10.1016/S0022-1694(01)00398-5Strupczewski WG, Singh VP, Feluch W (2001a) Non-stationary approach to at-site flood frequency modeling I. Maximum likelihood estimation. J Hydrol 248:123–142. https://doi.org/10.1016/S0022-1694(01)00397-3Strupczewski WG, Singh VP, Mitosek HT (2001b) Nonstationary approach to at-site flood frequency modeling III. Flood analysis of Polish rivers. J Hydrol 248:152–167. https://doi.org/10.1016/S0022-1694(01)00399-7Sridhar V, Nayak A (2010) Implications of climate-driven variability and trends for the hydrologic assessment of the Reynolds Creek Experimental Watershed, Idaho. J Hydrol 385(2010):183–202Tao H, Gemmer M, Bai Y, Su B, Mao W (2011) Trends of streamflow in the Tarim River Basin during the past 50 years: Human impact or climate change? J Hydrol 400(2011):1–9Trenberth KE, Fasullo JT, Shepherd TG (2015) Attribution of climate extreme events. Nat Clim Chang 5(8):725–730. https://doi.org/10.1038/nclimate2657Valero Villarroya M 2007 Evaluación de los efectos del cambio en los usos del suelo mediante el uso de un modelo de simulación del ciclo hidrológico aplicado en la cuenca del Júcar. Ejercicio final de carrera. Escuela de Caminos Canales y Puertos, Universidad Politécnica de ValenciaVillarini G, Serinaldi F, Smith JA, Krajewski WF (2009) On the stationarity of annual flood peaks in the Continental United States during the 20th Century. Water Resour Res 45:W08417. https://doi.org/10.1029/2008WR007645Villarini G, Smith JA, Napolitano F (2010) Nonstationary modeling of a long record of rainfall and temperature over Rome. Adv Water Resour 33:1256–1267. https://doi.org/10.1016/j.advwatres.2010.03.013Welch BL (1938) The significance of the difference between two means when the population variances are unequal. Biometrika 29:350–362Wong H, Hu BQ, Ip WC, Xia J (2006) Change-point analysis of hydrological time series using grey relational method. J Hydrol 324:323–338. https://doi.org/10.1016/j.jhydrol.2005.10.007Xie H, Li D, Xiong L (2014) Exploring the ability of the Pettit method for detecting change point by Monte Carlo simulation. Stoch Env Res Risk A 28(7):1643–1655. https://doi.org/10.1007/s00477-013-0814-yXiong L, Jiang C, Xu C-Y, Yu K-x, Guo S (2015) A framework of change-point detection for multivariate hydrological series Water Resour Res 51. doi: https://doi.org/10.1002/2015WR017677Yue S, Pilon P, Cavadias G (2002) Power of the Mann–Kendall and Sperman’s rho tests for detecting monotonic trends in hydrological series. J Hydrol 259:254–271. https://doi.org/10.1016/S0022-1694(01)00594-7Zhang Q, Singh VP, Sun P, Chen X, Zhang Z, Li J (2011) Precipitation and streamflow changes in China: Changing patterns, causes and implications. J Hydrol 410(2011):204–21

    Caracterización de la intrusión marina en las aguas subterráneas de la franja litoral de la cuenca del Júcar y propuestas metodológicas para la aplicación de las directivas europeas 2000/60/CE y 2006/118/CEE

    Full text link
    Las Directivas 2000/60/CE y 2006/118/CE han configurado un nuevo marco normativo al que se debe adaptar la gestión del agua en la Unión Europea con el objetivo de alcanzar el buen estado cuantitativo y químico de las masas de agua en el año 2015. Los Estados miembros han de coordinar las metodologías de trabajo para caracterizar el estado de las masas de agua y adaptar las redes de seguimiento del estado cuantitativo y químico de las aguas. En este contexto, la evaluación del riesgo de intrusión salina desde el mar es un aspecto clave para alcanzar el buen estado en las aguas subterráneas de los acuíferos costeros. La Confederación Hidrográfica del Júcar ha efectuado un estudio para la caracterización inicial del proceso de la intrusión marina en las masas de agua subterránea de la franja litoral de la cuenca del Júcar. El estudio se ha desarrollado a partir de una metodología consistente en la definición de los modelos conceptuales de los acuíferos costeros, un análisis estadístico previo de las series históricas para establecer los parámetros indicadores del estado cuantitativo y químico con respecto a la intrusión, y la comparación de estas series temporales con los volúmenes drenados al mar que resultan de la aplicación de modelos agregados de flujo en los acuíferos costeros.Fidalgo Pelarda, A.; Ferrer Polo, FJ.; Estrela Monreal, T.; Escuer, J. (2007). Caracterización de la intrusión marina en las aguas subterráneas de la franja litoral de la cuenca del Júcar y propuestas metodológicas para la aplicación de las directivas europeas 2000/60/CE y 2006/118/CEE. Boletín Geológico y Minero. 118:725-744. http://hdl.handle.net/10251/63901S72574411

    Aportación de la teledetección para la determinación del parámetro hidrológico del número de curva

    Get PDF
    [ES] El número de curva es uno de los parámetros más utilizados en España para estimar la infiltración en el suelo a partir de la precipitación. Uno de los problemas que presenta su estimación es que la información que para ésta se precisa no está en muchos casos actualizada. Para resolver este problema, en el presente artículo se propone utilizar la teledetección como fuente de información adicional a otras fuentes convencionales. Para evaluar su aportación, se han escogido seis cuencas experimentales pertenecientes a la base de datos del proyecto AMHY-FR1END (Ferrer y otros, 1997) y se ha analizado las diferencias que presentan los números de curva estimados a partir de diferentes fuentes de información. Los resultados muestran que dichas diferencias son importantes en cuanto a la variabilidad espacial del parámetro, pero no así en cuanto a los valores areales del mismo en la cuenca.Este trabajo se ha realizado en el marco del proyecto Estudio de las Posibilidades que ofrece la Teledetección y los Sistemas de Información Geográfica en la estimación de Parámetros Hidrológicos a escala regional (AMB95-1099) de la CICYT.Ferrer I Julià, M.; Ruiz Verdú, A.; Dimas Suárez, M.; Estrela Monreal, T. (1998). Aportación de la teledetección para la determinación del parámetro hidrológico del número de curva. Ingeniería del Agua. 5(1):35-46. https://doi.org/10.4995/ia.1998.2742SWORD354651Ardiles-López, L.; Ferrer Juliá, M..; Rodriguez Chaparro, J. (1996) The Use of GIS to estímate Hydrological Parameters in a Rainfall-Runoff Model. Proceedings of Joint European Conference and Exhibition on Geographical Information. Barcelona, March 27-29 1996, vol. 1, pp. 408-417.Arozarena, A. y Herrero, M. (1994) El Programa CORINE, Programa Land Cover. Una Metodología aplicada a las Islas Canarias En: Jornadas Técnicas sobre Sistemas de Información Geográfica y Teledetección Espacial aplicados a la Ordenación del Territorio y el Medio Ambiente. Vitoria, 21-23 Nov. 1994, pp. 87-98CEDEX (1994) Caracterización Geomorfológica de la Cuenca Alta del Río Palancia. Utilización de la Teledetección y de los Sistemas de Información Geográfica, Informe Parcial n° 3 del Proyecto I+D Modelos Hidrológicos de Previsión de Avenidas: Aplicación en Cuencas Experimentales. Centro de Estudios Hidrográficos (CEDEX).Chuvieco, E. (1996) Fundamentos de Teledetección Espacial. Editorial Rialp, 3a edición, Manuales Universitarios Rialp, 568 pp.Engman, E.T. y Gurney, R. J. (1991) Remote Sensing in Hydrology. Chapman and HallFerrer, M., Estrela, T.; Quintas, L.; Villaverde, J. (1997) Actualización de la base de datos de cuencas españolas en el proyecto Friend-Amhy. Ingeniería Civil. n° 108. pp.25-36Ferrer, M.; Rodriguez, J.; Estrela, T. (1995) Generación Automática del Número de Curva con Sistemas de Información Geográfica. Ingeniería del Agua, vol.2, n°4, pp.43-58McCuen, R.H. (1982) A Guide to Hydrologie Analysis using SCS Methods. Prentice Hall, 110 pp.McGregor (1987) Using Landsat to derive Curve number for Hydrologic Models. En:American Society for Photogrammetry and Remote Sensing and ASCM Fall Convention. Reno, NV, ASPRS Technical Papers, pp.129-135.Rango, A.; Feldman, A.; George, T. y Ragan, R. (1983) Effective Use of Landsat Data in Hydrologic Models. Water Resources Bulletin. 19 (2): 165-174Richards, J.A. (1986) Remote Sensing Digital Image Analysis. An Introduction. Springer-Verlag, 281 pp.Sharma, K.D. y Singh, S. (1992) Runoff estimation using Landsat Thematic Mapping data and the SCS model. Hydrological Sciences-Journal des Sciences Hydrologiques, 37, 1 / 2.Temez, J.R. ( 1987) Cálculo Hidrometeorológico de Caudales Máximos en Pequeñas Cuencas Naturales.MOPU, Dirección General de Carreteras, n° 12, 111 p

    Management Alternatives of Aquifer Storage, Distribution, and Simulation in Conjunctive Use

    Full text link
    [EN] Aquifers are ubiquitous, and their water is easy to obtain with low extraction costs. On many occasions, these characteristics lead to overexploitation due to important water level declines, reduction of river base flows, enhanced seawater intrusion, and wetland affection. The forecasted increase in water demands and global warming will impact the future availability of water resources. Conjunctive use of surface and subsurface waters can help in mitigating these impacts. There are two main conjunctive use strategies: artificial recharge (AR) and alternate conjunctive use (ACU). AR stores waters that are not to be used directly in aquifers. ACU utilizes groundwater in dry periods, while surface waters are preferred in wet ones; this allows the increase of water supply with lower dam storage, economic gains, and environmental advantages. Efficient conjunctive use can prevent soil salinization and waterlogging problems in semiarid countries due to excessive recharge from irrigation return flows or other origins. Groundwater is a neglected and generally misused resource to maintain environmental conditions. When considering the solution to a water resources problem, groundwater should always be part of the design as an alternative or a complementary resource. Aquifers have large inertia, and changes in their volumes are only noticeable after years of observations. Unfortunately, groundwater observation networks are much poorer than surface ones, something that should be changed if groundwater is to come to the rescue in these times of climate change. Human and material resources should be made available to monitor, control, analyze, and forecast groundwater.This research was funded by AGREEMAR Project (PCI2022-133001 funded by Spain's MCIN/AEI/10.13039/501100011033, by European Union's NextGenerationEU/PRTR), the SIGLOAN project (RTI2018-101397-B-I00) from the Spanish Ministry of Science, Innovation and Universities (Programa Estatal de I + D + i Orientada a los Retos de la Sociedad) and by project eGROUNDWATER funded by the PRIMA programme supported by the European's Union Horizon 2020 research and innovation programme under grant number 1921.Sahuquillo, A.; Cassiraga, EF.; Gómez-Hernández, JJ.; Andreu Álvarez, J.; Pulido-Velazquez, M.; Pulido Velázquez, D.; Álvarez-Villa, ÓD.... (2022). Management Alternatives of Aquifer Storage, Distribution, and Simulation in Conjunctive Use. Water. 14(15):1-15. https://doi.org/10.3390/w14152332115141

    La gestión de las sequías en España

    No full text
    corecore