31 research outputs found

    TrackML high-energy physics tracking challenge on Kaggle

    Get PDF
    The High-Luminosity LHC (HL-LHC) is expected to reach unprecedented collision intensities, which in turn will greatly increase the complexity of tracking within the event reconstruction. To reach out to computer science specialists, a tracking machine learning challenge (TrackML) was set up on Kaggle by a team of ATLAS, CMS, and LHCb physicists tracking experts and computer scientists building on the experience of the successful Higgs Machine Learning challenge in 2014. A training dataset based on a simulation of a generic HL-LHC experiment tracker has been created, listing for each event the measured 3D points, and the list of 3D points associated to a true track.The participants to the challenge should find the tracks in the test dataset, which means building the list of 3D points belonging to each track.The emphasis is to expose innovative approaches, rather than hyper-optimising known approaches. A metric reflecting the accuracy of a model at finding the proper associations that matter most to physics analysis will allow to select good candidates to augment or replace existing algorithms

    Adversarial learning to eliminate systematic errors: a case study in High Energy Physics

    Get PDF
    International audienceMaking the region selection procedure used in High Energy Physics analysis robust to systematic errors is a case of supervised domain adaptation. This paper proposes a benchmark that captures a simple but realistic case of systematic HEP analysis, in order to expose the issue to the wider community. The benchmark makes easy to conduct an experimental comparison of the recent adversarial knowledge-free approach and a less data-intensive alternative

    Systematics aware learning: a case study in High Energy Physics

    Get PDF
    International audienceExperimental science often has to cope with systematic errors that coherently bias data. We analyze this issue on the analysis of data produced by experiments of the Large Hadron Collider at CERN as a case of supervised domain adaptation. Systematics-aware learning should create an efficient representation that is insensitive to perturbations induced by the systematic effects. We present an experimental comparison of the adversarial knowledge-free approach and a less data-intensive alternative

    Systematic aware learning - A case study in High Energy Physics

    No full text
    International audienceExperimental science often has to cope with systematic errors that coherently bias data. We analyze this issue on the analysis of data produced by experiments of the Large Hadron Collider at CERN as a case of supervised domain adaptation. Systematics-aware learning should create an efficient representation that is insensitive to perturbations induced by the systematic effects. We present an experimental comparison of the adversarial knowledge-free approach and a less data-intensive alternative

    Systematic aware learning

    Get PDF
    Experimental science often has to cope with systematic errors that coherently bias data. We analyze this issue on the analysis of data produced by experiments of the Large Hadron Collider at CERN as a case of supervised domain adaptation. Systematics-aware learning should create an efficient representation that is insensitive to perturbations induced by the systematic effects. We present an experimental comparison of the adversarial knowledge-free approach and a less data-intensive alternative

    Robust deep learning: A case study

    Get PDF
    National audienceWe report on an experiment on robust classification. The literature proposes adversarial and generative learning, as well as feature construction with auto-encoders. In both cases, the context is domain-knowledge-free performance. As a consequence, the robustness quality relies on the representativity of the training dataset wrt the possible perturbations. When domain-specific a priori knowledge is available, as in our case, a specific flavor of DNN called Tangent Propagation is an effective and less data-intensive alternative

    New Machine Learning Developments in ROOT/TMVA

    Get PDF
    The Toolkit for Multivariate Analysis, TMVA, the machine learning package integrated into the ROOT data analysis framework, has recently seen improvements to its deep learning module, parallelisation of multivariate methods and cross validation. Performance benchmarks on datasets from high-energy physics are presented with a particular focus on the new deep learning module which contains robust fully-connected, convolutional and recurrent deep neural networks implemented on CPU and GPU architectures. Both dense and convo-lutional layers are shown to be competitive on small-scale networks suitable for high-level physics analyses in both training and in single-event evaluation. Par-allelisation efforts show an asymptotical 3-fold reduction in boosted decision tree training time while the cross validation implementation shows significant speed up with parallel fold evaluation
    corecore