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Systematics aware learning:
a case study in High Energy Physics

Victor Estrade1 and Cécile Germain1 and Isabelle Guyon1 and David Rousseau2

1. LRI, TAO, UPSud. 2. IN2P3, LAL.
Université Paris Saclay, France

Abstract. Experimental science often has to cope with systematic errors
that coherently bias data. We analyze this issue on the analysis of data
produced by experiments of the Large Hadron Collider at CERN as a case
of supervised domain adaptation. Systematics-aware learning should create
an efficient representation that is insensitive to perturbations induced by
the systematic effects. We present an experimental comparison of the
adversarial knowledge-free approach and a less data-intensive alternative.

1 Introduction
The 2010s extolled the so-called 4th paradigm of science: data-intensive scien-

tific discovery. A subsequent trend is the usage of Machine Learning techniques
to actually make use of collected data. On the other hand, since its inception,
experimental science has concerned itself with coping with uncertainties. We
explore how these two paradigms interact in a specific setting, which is simulation
based experimental science, and specifically on the impact of data bias.

In order to be concrete, we focus on a demanding example: the analysis of
the data produced by the experiments of the LHC (Large Hadron Collider) at
CERN, e.g. the measurement of the characteristics of new particles, such as the
Higgs boson. An essential component of this analysis is a procedure for selecting
a region of interest in the space of measured features. Multivariate classification
has become the standard tool to optimize the selection region. As such, the
classifier is an integral part of the measurement apparatus. For discovery and
measurement of a new particle such as the Higgs boson, by definition no labeled
real data are available. The classifier has to be trained on simulated data [1].

An experiment includes two sort of uncertainties: the uncertainty resulting
from unknown random effects that we shall call “statistical uncertainty”,
and that resulting from known nuisance factors that we shall call “systematic
uncertainty” . A systematics-aware learning procedure should optimize the
trade-off between both, by learning an efficient representation, which is insensitive
to perturbations induced by systematic effects. Two strategies are considered in
this paper, stemming from the related field of “domain adaptation” [2]: (1) a
knowledge-free setting, where the invariant representation is discovered from the
data (adversarial supervised learning); or (2) the integration of prior knowledge.
The main goal of this paper is to evaluate the two approaches.

2 Systematics in simulation-based analysis
We briefly describe the problem setting we are interested in as a machine

learning problem, without dwelling into the specifics of the underlying physics.



Classification. We address a two-class problem: signal (S) vs. background
(B). The S class in the “positive” class. To cope with class imbalance (elements
of class S are very rare), the simulator produces an even number of examples of
the two classes with importance-weights. This allows us to train the classifier on
a balanced dataset while taking weights into account for performance evaluation.
The quantities of interest are the weighted true and false positive counts where
the wi are the weights and t is the classification threshold of the discriminant
value scorei:

s =
∑

S,scorei>t

wi and b =
∑

B,scorei>t

wi.

In the simplest machine learning settings, data are drawn i.i.d. from an unknown,
but fixed data distribution. The generalization error in that case combines the
modeling error (due to model bias/model finite capacity and finite sample size)
and the intrinsic error (lowest achievable by the Bayes optimal classifier). This is
termed statistical error, although the capacity limitation truly is a systematic
error. The type of systematic error studied in this paper comes from departures
of the data from the classical i.i.d. assumption in the following way: test data
may be differently distributed from training data due to known nuisance factors
(noted Z), the effect of which is bounded by known values. This coincides with
the well known “domain adaptation” problem in machine learning, under the
covariate shift paradigm [3], as it coherently biases data.

Figure of merit. Without fully justifying it, we provide in this section
the figure of merit used by particle physicists, which is not the classification
accuracy, but a non-linear function of the number of true and false positives.
We call “signal region” the region of input space classified as S by the classifier.
Particle detection in physics boils down to counting the number of events (data
samples) falling into the signal region, called µ and determining its statistical
significance. To that end, it must be compared to the uncertainty. Let sz and
bz be the weighted counts of true and false positives with systematics at Z = z.
The figure of merit is the relative error:

σµ
µ

=
√
σ2

sta + σ2
sys, (1)

where σsta = s−1
0
√
s0 + b0 is the relative statistical error and σsys = s−1

0 (sz +
bz − s0 − b0) the relative systematic error. The nuisance parameter Z is 0 in the
nominal case.

This expression can be formally derived with the profile likelihood ratio
method [4]. An intuitive explanation works as follows. Let N be the selected
events, i.e. N = s + b. N is assumed to follow a Poisson distribution. The
measurement µ is proportional to number of signal events, and normalized to the
expected one from the standard model, that is µ0 = 1. The systematic error is
by definition µz − µ0. Because the value of the Nuisance Parameter is unknown,
the best estimate of the number of signal events at Z = z is Nz − b0, obtained



by subtracting the nominal number of background events, yieding:

σsys = sz + bz − s0 − b0

s0

The statistical error measures the impact of the intrinsic deficiencies of the
selection procedure. In the real experiment, all we have is N , thus the relative
statistical error is the ratio of the Poisson variance to the nominal estimate of
the number of signals:

σsta =
√
s0 + b0

s0
.

The dataset. In the experiments, we use the Enhanced Higgs Boson to
τ+τ− dataset [5] 1 which correspond to nominal data. The software to compute
the impact of the Nuisance parameter on the simulation is described in [6]. In
the following this will be called skewing the data.

3 Adversarial learning and Systematics

Learning with systematics is related to domain adaptation [2].However, clas-
sical domain adaptation usually addresses the semi-supervised setting [7] while
learning with systematics is fully supervised: with simulations, at training time
we have all the labels, and even the values of the nuisance parameter. We
compare several approaches, from the “naive” data perturbation method to elabo-
rate supervised learning procedures learning representations that do not contain
information that is domain-specific (or nuisance parameter-dependent):

Data Perturbation or Data Augmentation. Training on a mix of data
generated by varying the nuisance parameter in an adequate range. With enough
training data and a classifier of sufficient capacity, the algorithm should discover
the invariant manifold in data space.

Adversarial Learning. Learning to classify S vs. B while “unlearning” to
predict Z. This purely data driven approach is based on the Generative Adversar-
ial Network (GAN) framework [8].The Pivot Adversarial Network [9] exemplifies
this approach for the HEP (High Energy Physics) case we are interested in.
The Pivot Network is a GAN where the generated data is the distribution of
classification score.It enjoys the same theoretical optimality results in an equal
opportunity [10] model. The adversary tries to predict Z from the classifier
output. This method requires a large training set that is representative of the
full range of the data distribution, from nominal to perturbed.

Tangent Propagation. Regularizing with the partial derivative of the
classifier score w.r.t. the nuisance parameter [11]: the smaller the derivative,
the less sensitive the classifier. This is a method incorporating a priori knowl-
edge of the impact of systematics as a coherent geometric transform in feature
space. The systematics must be a differentiable transform f(x, Z) of the inputs.
This approach requires much less data than data perturbation/augmentation or
adversarial learning.

1available on UCI at http://mlphysics.ics.uci.edu/data/htautau/

http://mlphysics.ics.uci.edu/data/htautau/


Figure 1: Accuracy on the MNIST dataset as a function of rotation angle.

4 Performance evaluation

Our experiments compare as classifier a plain Deep Neural Network (NN)
with several neural network of the same architecture trained to be robust to
systematic errors: Neural Net w. Perturbed data (NNP) with an identical
size training set; Neural Net w. Augmented data (NNA), similar to NNP
but with 6 times more training data; Pivot Adversarial Network (PAN),
and Tangent Propagation (TP).

Experimental setting. In order to make the comparison manageable, the
dimensioning hyper parameters are identical for all DNN architectures, with
3 hidden layers of 120 neurons each. The networks were all trained for 10000
iterations with a mini-batch size of 1024 and optimized with Adam method.
Softplus and ReLU activations were tried and gave the same results.

NN is trained on the nominal dataset only. Pivot and Data Perturba-
tion/Augmentation are trained on a mix of skewed data, with Z drawn from
a normal distribution N (0, k10−2), with k can be 1, 3 or 5. TP is trained on
the nominal dataset with the tangent vector initialized by the finite difference
method. In all cases, the systematics are introduced in the test set with a fixed
skewing, because the nuisance parameter is well defined, although unknown. All
presented values are the mean and standard deviation of a 12-random-split cross
validation (80% training, 20% testing).

MNIST benchmark. Figure 1 compares the accuracy for the multiclass
classification problem the classical MNIST dataset [12]. Z is a rotation of a given
angle of the digits. To compute the tangent vector, a smoothing is applied to the
rotated image, as in [11]. NNA is best showing that data augmentation works,
but at the price of training on more data. NNP shows robustness to systematic
error, but obtains degraded performance on the original Z=0 distribution. TP
performs better: it rips the full benefit of the a-priori knowledge of the geometric
transformation, despite the fact that the manifold of rotations is likely to have
high curvature [13]. PAN also shows good performances: it learns the invariance
thanks to the adversarial training but TP is better for small angles.

The HEP benchmark. We report the errors and the overall figure of merit



σµ/µ not only at the optimum, but along the decision threshold t in a physically
plausible region (expressed by the fraction of rejected events), in order to capture
its behavior along the sensitivity/specificity trade-off.

(a) statistical error (Ztest = +3%) (b) systematic error (Ztest = +3%)

(c) combined error (Ztest = +3%)

Model σµ/µ min
NN 2.37 ± 0.40
NNP 3.56 ± 0.59
NNA 3.49 ± 0.54
TP 2.55 ± 0.44
PAN 2.29 ± 0.34

(d) combined error minima

Figure 2: Performances along decision threshold for the HEP benchmark.

Figure 2 shows the complex tradeoff between the systematic and statistical
errors. There are two different regimes. In the left part, up to ∼ 98% of
the examples were classified as negatives, σsys is much larger than σsta. As
expected, Tangent Propagation and Data Perturbation/Augmentation degrade
the statistical error w.r.t. the basic NN (remember that the statistical error
is computed on the nominal, not skewed, data). The degradation is worse for
the later, but with limited impact as they both improve on NN on systematics.
However, the interesting region is the right area, close to the minimum, where
the classification threshold should be selected [14]. Here, the two errors are
comparable. Data Perturbation/Augmentation is heavily penalized by statistical
error, while the three others are very close, with a small penalty for Tangent
Propagation. The Wilcoxon ranksum test (at the 95% confidence level) applied
to the fold-wise minima confirms this ranking. In both regions, Pivot is close to
the basic NN, hinting that the adversarial component did not succeed in learning
an adequate target function.



5 Conclusion

This paper has presented a case study of data bias in simulation-based
experimental science, and related it to the classical concepts of domain adaptation,
systematic error and nuisance parameters. The problem consists of learning a
representation that is insensitive to perturbations induced by nuisance parameters.
The need for the adversarial techniques, assuming a completely knowledge-free
approach, has been questioned. Our results contrast the superior performance of
data augmentation or incorporating a priori knowledge –Tangent Propagation
(TP) approach – on a well separated classes (MNIST data) with a real case
setting in HEP. In the first case Augmentation/TP dominates. In the latter
case, a plain neural network performs best. Adversarial learning with the Pivot
method does not show a significant advantage in either case but never performs
worse than the baseline.
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