2 research outputs found

    Meckel's and condylar cartilages anomalies in achondroplasia result in defective development and growth of the mandible

    No full text
    Activating FGFR3 mutations in human result in achondroplasia (ACH), the most frequent form of dwarfism, where cartilages are severely disturbed causing long bones, cranial base and vertebrae defects. Because mandibular development and growth rely on cartilages that guide or directly participate to the ossification process, we investigated the impact of FGFR3 mutations on mandibular shape, size and position. By using CT scan imaging of ACH children and by analyzing Fgfr3Y367C/+ mice, a model of ACH, we show that FGFR3 gain-of-function mutations lead to structural anomalies of primary (Meckel’s) and secondary (condylar) cartilages of the mandible, resulting in mandibular hypoplasia and dysmorphogenesis. These defects are likely related to a defective chondrocyte proliferation and differentiation and pan-FGFR tyrosine kinase inhibitor NVP-BGJ398 corrects Meckel’s and condylar cartilages defects ex vivo. Moreover, we show that low dose of NVP-BGJ398 improves in vivo condyle growth and corrects dysmorphologies in Fgfr3Y367C/+ mice, suggesting that postnatal treatment with NVP-BGJ398 mice might offer a new therapeutic strategy to improve mandible anomalies in ACH and others FGFR3-related disorders

    Super-resolved live-cell imaging using Random Illumination Microscopy

    No full text
    International audienceSuper-resolution fluorescence microscopy has been instrumental to progress in biology. Yet, the photo-induced toxicity, the loss of resolution into scattering samples or the complexity of the experimental setups curtail its general use for functional cell imaging. Here, we describe a new technology for tissue imaging reaching a 114nm/8Hz resolution at 30 µm depth. Random Illumination Microscopy (RIM) consists in shining the sample with uncontrolled speckles and extracting a high-fidelity super-resolved image from the variance of the data using a reconstruction scheme accounting for the spatial correlation of the illuminations. Super-resolution unaffected by optical aberrations, undetectable phototoxicity, fast image acquisition rate and ease of use, altogether, make RIM ideally suited for functional live cell imaging in situ . RIM ability to image molecular and cellular processes in three dimensions and at high resolution is demonstrated in a wide range of biological situations such as the motion of Myosin II minifilaments in Drosophila
    corecore