6 research outputs found

    Truncating FLNC Mutations Are Associated With High-Risk Dilated and Arrhythmogenic Cardiomyopathies

    Get PDF
    BACKGROUND: Filamin C (encoded by the FLNC gene) is essential for sarcomere attachment to the plasmatic membrane. FLNC mutations have been associated with myofibrillar myopathies, and cardiac involvement has been reported in some carriers. Accordingly, since 2012, the authors have included FLNC in the genetic screening of patients with inherited cardiomyopathies and sudden death. OBJECTIVES: The aim of this study was to demonstrate the association between truncating mutations in FLNC and the development of high-risk dilated and arrhythmogenic cardiomyopathies. METHODS: FLNC was studied using next-generation sequencing in 2,877 patients with inherited cardiovascular diseases. A characteristic phenotype was identified in probands with truncating mutations in FLNC. Clinical and genetic evaluation of 28 affected families was performed. Localization of filamin C in cardiac tissue was analyzed in patients with truncating FLNC mutations using immunohistochemistry. RESULTS: Twenty-three truncating mutations were identified in 28 probands previously diagnosed with dilated, arrhythmogenic, or restrictive cardiomyopathies. Truncating FLNC mutations were absent in patients with other phenotypes, including 1,078 patients with hypertrophic cardiomyopathy. Fifty-four mutation carriers were identified among 121 screened relatives. The phenotype consisted of left ventricular dilation (68%), systolic dysfunction (46%), and myocardial fibrosis (67%); inferolateral negative T waves and low QRS voltages on electrocardiography (33%); ventricular arrhythmias (82%); and frequent sudden cardiac death (40 cases in 21 of 28 families). Clinical skeletal myopathy was not observed. Penetrance was >97% in carriers older than 40 years. Truncating mutations in FLNC cosegregated with this phenotype with a dominant inheritance pattern (combined logarithm of the odds score: 9.5). Immunohistochemical staining of myocardial tissue showed no abnormal filamin C aggregates in patients with truncating FLNC mutations. CONCLUSIONS: Truncating mutations in FLNC caused an overlapping phenotype of dilated and left-dominant arrhythmogenic cardiomyopathies complicated by frequent premature sudden death. Prompt implantation of a cardiac defibrillator should be considered in affected patients harboring truncating mutations in FLNC.Instituto de Salud Carlos III [PI11/0699, PI14/0967, PI14/01477, RD012/0042/0029, RD012/0042/0049, RD012/0042/0066, RD12/0042/0069]; Spanish Ministry of Economy and Competitiveness [SAF2015-71863-REDT]; Plan Nacional de I+D+I; Plan Estatalde I+D+I, European Regional Development Fund; Health in Code SLS

    Electrocardiographic findings in patients with arrhythmogenic cardiomyopathy and right bundle branch block ventricular tachycardia

    Full text link
    AIMS: Little is known about patients with right bundle branch block (RBBB)-ventricular tachycardia (VT) and arrhythmogenic cardiomyopathy (ACM). Our aims were: (i) to describe electrocardiogram (ECG) characteristics of sinus rhythm (SR) and VT; (ii) to correlate SR with RBBB-VT ECGs; and (iii) to compare VT ECGs with electro-anatomic mapping (EAM) data. METHODS AND RESULTS: From the European Survey on ACM, 70 patients with spontaneous RBBB-VT were included. Putative left ventricular (LV) sites of origin (SOOs) were estimated with a VT-axis-derived methodology and confirmed by EAM data when available.  Overall, 49 (70%) patients met definite Task Force Criteria. Low QRS voltage predominated in lateral leads (n = 37, 55%), but QRS fragmentation was more frequent in inferior leads (n = 15, 23%). T-wave inversion (TWI) was equally frequent in inferior (n = 28, 42%) and lateral (n = 27, 40%) leads. TWI in inferior leads was associated with reduced LV ejection fraction (LVEF; 46 ± 10 vs. 53 ± 8, P = 0.02). Regarding SOOs, the inferior wall harboured 31 (46%) SOOs, followed by the lateral wall (n = 17, 25%), the anterior wall (n = 15, 22%), and the septum (n = 4, 6%). EAM data were available for 16 patients and showed good concordance with the putative SOOs. In all patients with superior-axis RBBB-VT who underwent endo-epicardial VT activation mapping, VT originated from the LV. CONCLUSIONS: In patients with ACM and RBBB-VT, RBBB-VTs originated mainly from the inferior and lateral LV walls. SR depolarization and repolarization abnormalities were frequent and associated with underlying variants

    Natural History and Risk Stratification in Andersen-Tawil Syndrome Type 1.

    No full text
    Andersen-Tawil Syndrome type 1 (ATS1) is a rare arrhythmogenic disorder, caused by loss-of-function mutations in the KCNJ2 gene. We present here the largest cohort of patients with ATS1 with outcome data reported. This study sought to define the risk of life-threatening arrhythmic events (LAE), identify predictors of such events, and define the efficacy of antiarrhythmic therapy in patients with ATS1. Clinical and genetic data from consecutive patients with ATS1 from 23 centers were entered in a database implemented at ICS Maugeri in Pavia, Italy, and pooled for analysis. We enrolled 118 patients with ATS1 from 57 families (age 23 ± 17 years at enrollment). Over a median follow-up of 6.2 years (interquartile range: 2.7 to 16.5 years), 17 patients experienced a first LAE, with a cumulative probability of 7.9% at 5 years. An increased risk of LAE was associated with a history of syncope (hazard ratio [HR]: 4.54; p = 0.02), with the documentation of sustained ventricular tachycardia (HR 9.34; p = 0.001) and with the administration of amiodarone (HR: 268; p  Our data demonstrate that the clinical course of patients with ATS1 is characterized by a high rate of LAE. A history of unexplained syncope or of documented sustained ventricular tachycardia is associated with a higher risk of LAE. Amiodarone is proarrhythmic and should be avoided in patients with ATS1

    The prevalence of left and right bundle branch block morphology ventricular tachycardia amongst patients with arrhythmogenic cardiomyopathy and sustained ventricular tachycardia:insights from the European Survey on Arrhythmogenic Cardiomyopathy

    No full text
    International audienceAims In arrhythmogenic cardiomyopathy (ACM), sustained ventricular tachycardia (VT) typically displays a left bundle branch block (LBBB) morphology while a right bundle branch block (RBBB) morphology is rare. The present study assesses the VT morphology in ACM patients with sustained VT and their clinical and genetic characteristics. Methods and results Twenty-six centres from 11 European countries provided information on 954 ACM patients who had >= 1 episode of sustained VT spontaneously documented during patients' clinical course. Arrhythmogenic cardiomyopathy was defined according to the 2010 Task Force Criteria, and VT morphology according to the QRS pattern in V1. Overall, 882 (92.5%) patients displayed LBBB-VT alone and 72 (7.5%) RBBB-VT [alone in 42 (4.4%) or in combination with LBBB-VT in 30 (3.1%)]. Male sex prevalence was 79.3%, 88.1%, and 56.7% in the LBBB-VT, RBBB-VT, and LBBB + RBBB-VT groups, respectively (P = 0.007). First RBBB-VT occurred 5 years after the first LBBB-VT (46.5 +/- 14.4 vs 41.1 +/- 15.8 years, P = 0.011). An implanted cardioverter-defibrillator was more frequently implanted in the RBBB-VT (92.9%) and the LBBB + RBBB-VT groups (90%) than in the LBBB-VT group (68.1%) (P < 0.001). Mutations in PKP2 predominated in the LBBB-VT (65.2%) and the LBBB + RBBB-VT (41.7%) groups while DSP mutations predominated in the RBBB-VT group (45.5%). By multivariable analysis, female sex was associated with LBBB + RBBB-VT (P = 0.011) while DSP mutations were associated with RBBB-VT (P < 0.001). After a median follow-up of 103 (51-185) months, death occurred in 106 (11.1%) patients with no intergroup difference (P = 0.176). Conclusion RBBB-VT accounts for a significant proportion of sustained VTs in ACM. Sex and type of pathogenic mutations were associated with VT type, female sex with LBBB + RBBB-VT, and DSP mutation with RBBB-VT

    Abstracts of papers presented at the 15th conference of the weed science society of Israel

    No full text
    corecore