69 research outputs found

    Actinobacteria and Their Role as Plant Probiotics.

    Get PDF
    Actinobacteria is one of the largest phyla within the domain Bacteria. This phylum comprises more than 400 genera heterogeneously distributed in up to 50 families, 20 orders and 6 classes, being composed with very diverse groups of microorganisms. Members included within this phylum were recovered from a wide range of aquatic and terrestrial environments and also from a huge number of higher organisms, including plants. Actinobacteria inhabiting soils and plants are well known as producers of bioactive molecules and as biocontrol agents, possessing antimicrobial activities mostly against pathogenic fungi and/or bacteria. Moreover, some of them have the capacity to exert beneficial effects on plant growth and development via different plant growth-promoting mechanisms, i.e., phytohormones biosynthesis, siderophore production, and phosphate solubilization, among others. The available genomic data revealed that members belonging to this phylum have a huge potential as Plant Probiotic Actinobacteria. A plethora of studies reported the isolation and identification of plant endophytic actinobacteria possessing those features and also their performance under controlled conditions. However, few studies show the effects of the inoculation of these actinobacteria on real field conditions. In this chapter, we will provide an overview of the available data on the Actinobacteria displaying plant growth-promoting features, particularly in the ones that already had applications in agriculture. Together with a correct taxonomic classification, we will present evidence that the Plant Probiotic Actinobacteria should be considered as a source of bacterial candidates that will be important for a future sustainable agriculture

    Cardiac cells stimulated with an axial current-like waveform reproduce electrophysiological properties of tissue fibers

    Get PDF
    Background and objective: In silico electrophysiological models are generally validated by comparing simulated results with experimental data. When dealing with single-cell and tissue scales simultaneously, as occurs frequently during model development and calibration, the effects of inter-cellular coupling should be considered to ensure the trustworthiness of model predictions. The hypothesis of this paper is that the cell-tissue mismatch can be reduced by incorporating the effects of conduction into the single-cell stimulation current. Methods: Five different stimulation waveforms were applied to the human ventricular O'Hara-Rudy cell model. The waveforms included the commonly used monophasic and biphasic (symmetric and asymmetric) pulses, a triangular waveform and a newly proposed asymmetric waveform (stimulation A) that resembles the transmembrane current associated with AP conduction in tissue. A comparison between single-cell and fiber simulated results was established by computing the relative difference between the values of AP-derived properties at different scales, and by evaluating the differences in the contributions of ionic conductances to each evaluated property. As a proof of the benefit, we investigated multi-scale differences in the simulation of the effects induced by dofetilide, a selective IKr blocker with high torsadogenic risk, on ventricular repolarization at different pacing rates. Results: Out of the five tested stimulation waveforms, stimulation A produced the closest correspondence between cell and tissue simulations in terms of AP properties at steady-state and under dynamic pacing and of ionic contributors to those AP properties. Also, stimulation A reproduced the effects of dofetilide better than the other alternative waveforms, mirroring the ’beat-skipping’ behavior observed at fast pacing rates in experiments with human tissue. Conclusions: The proposed stimulation current waveform accounts for inter-cellular coupling effects by mimicking cell excitation during AP conduction. The proposed waveform improves the correspondence between simulation scales, which could improve the trustworthiness of single-cell simulations without adding computational cost. © 202

    New Methodologies for the Development and Validation of Electrophysiological Models

    Get PDF
    De acuerdo a los datos de la Organización Mundial de la Salud, se estima que 17,7 millones de personas murieron de enfermedades cardiacas en 2015, lo que supone el 31% de las muertes, haciendo de estas patologías la primera causa de muerte en el mundo. El corazón es un sistema complejo que trabaja gracias a la interacción de un gran número de elementos en diferentes escalas espaciales y temporales. La función principal del corazón es bombear sangre en todo el cuerpo, siendo esta acción mecánica activada por la estimulación eléctrica. La aparición de problemas en el funcionamiento eléctrico o mecánico del corazón en cualquiera de las escalas involucradas, temporal o espacial, puede dar lugar a un mal funcionamiento cardiaco. El modelado matemático y la simulación de la actividad eléctrica del corazón (denominada electrofisiología cardiaca) y el procesado de señales bioeléctricas proporcionan un marco ideal para unir la información clínica y los estudios experimentales con la comprensión de los mecanismos que subyacen a estos problemas. Debido al gran número de factores que se deben tener en cuenta a la hora de desarrollar y validar un modelo computacional de electrofisiología cardiaca, asi como las complejas interacciones que existen entre ellos, hacen que nuevas metodologías que facilitan la concepción, la actualización y la validación de nuevos modelos sean de gran valor. Estas metodologías pueden enfocarse sea en la definición de las compuertas iónicas de los modelos, como en la propagación del impulso eléctrico en modelos multiescala. Esta tesis pretende mejorar el conocimiento existente sobre electrofisiología cardiaca proponiendo nuevas técnicas para desarrollar y validar modelos computacionales cardiacos, a través de la evaluación de los efectos de los eventos modelados mediante la consideración de las interacciones entre los diferentes componentes del modelo y la simulación de un rango de escalas espacio-temporales.En el capítulo 2, se introdujo un nuevo paradigma para desarrollar un nuevo modelo de potencial de acción de cardiomiocito humano, el modelo CRLP, partiendo de un modelo previamente publicado e incorporando nuevas mediciones experimentales de corrientes de potasio y reformulando la corriente de calcio tipo L. El paradigma introducido se basó en el análisis de la capacidad del modelo para replicar un conjunto de marcadores electrofisiológicos bien establecidos y en un análisis de sensibilidad de esos marcadores a las variaciones en los parámetros del modelo. Una de las ventajas del paradigma propuesto fue la posibilidad de identificar parámetros del modelo que no dependen directamente de las mediciones individuales de corrientes o concentraciones y que comúnmente se establecen ad hoc. El modelo CRLP se validó y se midió su rendimiento en la capacidad para predecir marcadores relacionados con la arritmia ventricular en comparación con el modelo cellular en el que se había basado.En el capítulo 3, se actualizó el modelo CRLP desarrollado en el capítulo 2 para introducir la formulación de la dinámica de potasio intracelular ([K+]i). Esta es una característica importante para la investigación de arritmias ventriculares que surgen en condiciones de hiperpotasemia, uno de los componentes de la isquemia de miocardio. La introducción directa de la dinámica de [K+]i en el modelo generó un desequilibrio en las corrientes de potasio que condugeron a una deriva en [K+]i. Para corregir tal desequilibrio, se propuso un algoritmo de optimización que permitía estimar las conductancias de las corrientes iónicas del modelo CRLP al tiempo que garantizaba valores fisiológicamente plausibles de una selección de propiedades electrofisiológicas, algunas de ellas muy relevantes en el estudio de arritmias ventriculares.Como se mencionó anteriormente, al proponer un nuevo modelo o al actualizar un modelo existente, la coherencia entre los datos simulados y experimentales debe verificarse considerando todos los efectos y escalas involucradas. Cuanto mejor se reproduzcan las condiciones experimentales en las simulaciones, más robusto será el proceso de desarrollo y validación del modelo. En el capítulo 4, se propuso la simulación de protocolos experimentales in silico para analizar cómo las interacciones entre los componentes del modelo afectan el desarrollo y la validación de los modelos matemáticos de canales iónicos; y cómo la propagación afecta los marcadores basados en el potencial de acción cuando son simulados en células aisladas o en preparaciones tisulares, identificando cómo contribuye cada corriente iónica en cada caso. y con los modelos de células ventriculares humanas más recientes publicados en laliteratura.El capítulo 7 resume las principales conclusiones de la tesis y presenta nuevas líneas de investigación que podrían emprenderse en futuros estudios. En conclusión, diferentes técnicas para mejorar el desarrollo y la validación de modelos electrofisiológicos cardíacos han sido propuestos y analizados en esta tesis. Basándose en el aumento de potencia computacional, se han considerado nuevas estrategias para reducir el número de hipótesis y/o supuestos al construir un modelo de potencial de acción de cardiomiocito ventricular. La aplicación de un algoritmo de optimización junto con la simulación in silico de los protocolos experimentales han ayudado a encontrar un modelo que represente mejor los resultados experimentales de los marcadores electrofisiológicos de riesgo arrítmico.El modelo CRLP, desarrollado en el capítulo 2 y actualizado en el capítulo 3, presentaba una forma más bien atípica al final de la fase de despolarización del potencial de acción (fase 1). La simulación in silico de los protocolos experimentales descritos en el capítulo 4 y la metodología de optimización presentada en el capítulo 3 se utilizaron para mejorar la forma del potencial de acción al tiempo que validaba el modelo ajustado a escalas iónicas, celulares y de tejido.En el capítulo 6 se integraron todas las formulaciones iniciales y actualizaciones subsiguientes del modelo CRLP propuestas en los capítulos anteriores y se reajustaron las conductancias iónicas del modelo para mejorar el comportamiento del modelo con respecto a medidas electrofisiológicas experimentales. Todas las metodologías introducidas a lo largo de la tesis se utilizaron para obtener un nuevo modelo de potencial de acción ventricular humano. Para la validación del modelo, se consideró un rango de datos experimentales disponibles a diferentes escalas y destinados a evaluar diferentes propiedades electrofisiológicas. Las condiciones subyacentes a cada uno de los estudios experimentales se replicaron tan fielmente como fue posible. Los resultados simulados con la versión final del modelo CRLP se compararon en todos los casos con todas las evidencias experimentales disponiblesAccording to data from the World Health Organization (WHO), 17.7 million people were estimated to have died of cardiovascular diseases (CVDs) in 2015. This represents 31 of all global deaths, making CVDs the leading cause of death worldwide. The heart is a complex system that works due to the interaction of a large number of elements at different temporal and spatial scales. The main function of the heart is to pump blood throughout the body, with this mechanical action being triggered by electrical impulses. Issues arising in the electrical or mechanical actions of the heart at any of the involved temporal and spatial scales can lead to cardiac malfunctioning. Mathematical modeling and simulation of the heart's electrical activity (so-called cardiac electrophysiology) combined with signal processing of bioelectrical signals provide an ideal framework to join the information from clinical and experimental studies with the understanding of the mechanisms underlying them. Due to the high number of factors involved in the development and validation of cardiac computational electrophysiological models and the intricate interrelationships between them, novel methodologies that help to control the design, update and validation of new models become of great advantage. These methodologies can target from the definition of ionic gating in the simulated cells to the propagation of the electrical impulse in multi-scale models. This thesis aims to improve the existing knowledge on heart's electrophysiology by proposing novel techniques to develop and validate cardiac computational models while accounting for the interactions between model components and including simulations of a range of spatio-temporal scales. In chapter 2, a new paradigm was introduced to develop a novel human ventricular cell model, the CRLP model, by departing from a previously published model, the Grandi-Pasqualini-Bers model (Grandi et al., 2009). Novel experimental measurements of potassium currents were incorporated and the L-type calcium current was reformulated. The introduced paradigm was based on the analysis of the model's ability to replicate a set of well-established electrophysiological markers and on a sensitivity analysis of those markers to variations in model parameters (Romero et al., 2008). A major advantage of the proposed paradigm was the possibility to identify model parameter values that do not directly depend on individual current measurements or concentrations, which are commonly set in an ad hoc manner. The developed CRLP model was validated and its improved capacity to investigate arrhythmia-related properties, as compared to the cell model it was based on, was corroborated. In chapter 3, the CRLP model developed in chapter 2 was updated to introduce the formulation of intracellular potassium ([K+]i) dynamics. This is an important characteristic for investigation of ventricular arrhythmias arising under conditions of hyperkalemia, one of the components of myocardial ischemia (Coronel et al. 1988). Direct introduction of [K+]i dynamics into the model generated an imbalance in the potassium currents leading to a drift in [K+]i. To correct for such an imbalance, an optimization framework was proposed that allowed estimating the ionic current conductances of the CRLP model while guaranteeing physiologically plausible values of selected electrophysiological properties, many of them highly relevant for investigation of ventricular arrhythmias. As mentioned above, when proposing a new model, or when updating an existing model, consistency between simulated and experimental data should be verified by considering all involved effects and scales. The closer the experimental conditions are reproduced in the computer simulations, the more robust the process of model development and validation can be. In chapter 4, in silico simulation of experimental protocols was proposed to analyze: how interactions between model components affect the development and validation of mathematical ion channel models; and how propagation affects action potential (AP)-based markers simulated in isolated cells and in tissue preparations, with identification of the ionic contributors in each case. The CRLP model, developed in chapter 2 and updated in chapter 3, presented a rather atypical shape at the end of the depolarization phase of the AP (phase 1). In chapter 5, the in silico simulations of experimental protocols described in chapter and the optimization methodology introduced in chapter 3 were used to improve the AP shape, while validating the adjusted model at ionic, cell and tissue scales. In chapter 6, all the initial formulations and subsequent updates of the CRLP model proposed in previous chapters were integrated and the ionic conductances of the integrated model were readjusted to improve replication of experimental electrophysiological measures. All the methodologies introduced throughout the thesis were thus used to build a novel human ventricular AP model. For model validation, a range of available experimental data at different scales targetting different electrophysiological properties was considered. Conditions underlying each of the experimental studies were replicated as faithfully as possible. Results simulated with the final version of the CRLP model were in all cases compared with all available experimental evidences and with the most recent human ventricular cell models published in the literature. Chapter 7, summarizes the main conclusions of the thesis and presents new lines of research that could be undertaken in future studies. <br /

    An improved human ventricular cell model for investigation of cardiac arrhythmias under hyperkalemic conditions

    Get PDF
    The use of experiments for studying cardiac arrhythmias or the effect of drugs on cardiac electrophysiology is mostly limited to measurements obtained from electrograms (EGMs, measured on the heart surface) or, more often, electrocardiograms (ECGs, measured on the body surface). Despite the fact that many diagnostic and therapeutical decisions rely only upon interpretation of ECG patterns, the cellular and subcellular mechanisms underlying pathophysiological ECG changes remain mostly unclear. Among the different approaches aimed to connect the ECG with its underlying basis, multi-scale computational modeling of the heart arises as a powerful tool to understand cardiac functioning from the ionic to the whole organ level. With the increase in computational resources available to the scientific community, mathematical modeling and simulation of heart's electrical activity is becoming a fundamental tool to understand cardiac behavior. In this study several modifications were introduced to a recently proposed action potential (AP) cell model so as to render it suitable for the study of ventricular arrhythmias. These modifications were based on new experimental data and in the results of several cellular arrhythmic risk biomarkers reported in the literature. Five stimulation protocols were applied to the original and improved models of isolated cell, and a number of cellular arrhythmic risk biomarkers were computed. The stimulation protocol included a steady-state protocol, abrupt changes in cycle length (CL) protocol, S1S2 and dynamic restitution protocols, and concentration rate dependence protocol. In addition, the behavior of the proposed model under hyperkalemic conditions was simulated in a one dimensional fiber by increasing the extracellular [K+], measuring the AP duration (APD), conduction velocity (CV) and effective refractory period (ERP) after steady-state conditions had been reached. Our modifications led to: a) further improved AP triangulation (78:1 ms); b) APD rate adaptation curves characterized by fast and slow time constants within physiological ranges (10:1 s and 105:9 s); c) maximum S1S2 restitution slope in accordance with experimental data (SS1S2 = 1:0). Under hyperkalemia, our results showed that APD progressively decreased with the level of hyperkalemia, while ERP increased after a threshold in the extracellular [K+] was reached ([K+]o = 6mM). Conduction velocity decreased with hyperkalemia and the conduction was blocked above [K+]o = 10:4 mM. Above [K+]o = 9:8mM, alternans appeared in the APD. These results suggest that the longer ERP values and the conduction block above [K+]o = 10:4mM found in the central zone of acutely ischemic tissue as compared to the normal zone could create areas of block that could set a substrate for reentrant arrhythmias

    Anatomía y función de la articulación coxofemoral. Anatomía artroscópica de la cadera

    Get PDF
    ResumenObjetivoLa anatomía de la cadera presenta una serie de peculiaridades que condicionan el tratamiento artroscópico de su patología. El objetivo de la presente publicación es describir los hallazgos anatómicos y biomecánicos más destacados para la aplicación clínica y terapéutica.MétodoDividiremos el capítulo en biomecánica de la cadera con aplicación clínica y las estructuras anatómicas según estén en el compartimento central o en periférico.ResultadosLa necesidad de tracción para poder acceder a la articulación y la dificultad de movilidad dentro de la misma, nos obliga a conocer la anatomía normal y sus variantes. En el compartimento central describiremos estructuras como el labrum, cartílago acetabular, ligamento redondo, fosita semilunar y cartílago de carga de la cabeza femoral. En el compartimento periférico se observará el cartílago de la cabeza, cara no articular del labrum, cápsula y diferentes plicas sinoviales.ConclusionesConocer la anatomía artroscópica y sus variantes, junto con nociones básicas de biomecánica de la cadera, nos permiten mejorar nuestra orientación en una articulación de difícil acceso.Relevancia clínicaEl conocimiento de la anatomía artroscópica y la biomecánica aplicada de la cadera nos permite acortar nuestra curva de aprendizaje quirúrgico en artroscopia de cadera.Nivel de evidenciaOpinión de expertos Nivel IV.AbstractObjectiveHip joint anatomy has a number of peculiarities that determine the arthroscopic treatment. The aim of this article is to describe the most significant anatomical and biomechanical findings for clinical and therapeutic applications.MethodWe divide the chapter into hip biomechanics with clinical application and anatomical structures of the central or peripheral compartment.ResultsAccess and mobility into the hip joint is difficult, and requires understanding the normal anatomy and its variants. In the central compartment, we describe important structures such as the labrum, acetabular cartilage, round ligament, acetabular cartilage, and cartilage of the femoral head. In the peripheral compartment, femoral head cartilage, non-articular labrum, capsule and synovial folds are described.ConclusionsUnderstanding hip arthroscopic anatomy and its variants, along with the basics of hip biomechanics, allow us to improve our orientation in a joint with a difficult access.Clinical relevanceThe knowledge of applied anatomy and arthroscopic hip biomechanics allows us to reduce our surgical learning curve in hip arthroscopy technique.Level of evidenceLevel IV Expert opinion

    La globalización en México: La inserción de la posmodernidad en el tradicionalismo tlaxcalteca

    Get PDF
    Globalization promotes dynamic expansion in postmodern culture, thus new axiological parameters. The advent of globalization to Tlaxcala, traditionalist society hyper-identitary, takes it by surprise and causes some changes for which it was not prepared; impacts its fundamental structures: political, social, communicative, religious and causes cracks in the interactions, for example, in families forged from vintage times. Whole picture can be presented as changes in the classic schemes construction of subjectivities, status, roles, values, motivations, are being corrupted, new types appear, from the techno-hermit locked in the walls of a bedroom connected to the communicational gadgetry, to virtual hypersocial passing day ever palpated connected beings. And all this while, in the same house, adults try to stanch old links.Globalization promotes dynamic expansion in postmodern culture, thus new axiological parameters. The advent of globalization to Tlaxcala, traditionalist society hyper-identitary, takes it by surprise and causes some changes for which it was not prepared; impacts its fundamental structures: political, social, communicative, religious and causes cracks in the interactions, for example, in families forged from vintage times. Whole picture can be presented as changes in the classic schemes construction of subjectivities, status, roles, values, motivations, are being corrupted, new types appear, from the techno-hermit locked in the walls of a bedroom connected to the communicational gadgetry, to virtual hypersocial passing day ever palpated connected beings. And all this while, in the same house, adults try to stanch old links

    Investigación in silico sobre el papel de los canales SK en miocitos ventriculares de pacientes con insuficiencia cardiaca

    Get PDF
    En este trabajo se presenta la extensión de un modelo computacional electrofisiológico de miocito ventricular humano para representar la actividad de los canales SK en condiciones de insuficiencia cardiaca. Las simulaciones realizadas con el modelo permiten reproducir evidencias experimentales acerca del papel de estos canales en la actividad eléctrica ventricular

    Inhibiting the stringent response blocks Mycobacterium tuberculosis entry into quiescence and reduces persistence

    Get PDF
    The stringent response enables Mycobacterium tuberculosis (Mtb) to shut down its replication and metabolism under various stresses. Here we show that Mtb lacking the stringent response enzyme RelMtb was unable to slow its replication rate during nutrient starvation. Metabolomics analysis revealed that the nutrient-starved relMtb-deficient strain had increased metabolism similar to that of exponentially growing wild-type bacteria in nutrient-rich broth, consistent with an inability to enter quiescence. Deficiency of relMtb increased the susceptibility of mutant bacteria to killing by isoniazid during nutrient starvation and in the lungs of chronically infected mice. We screened a pharmaceutical library of over 2 million compounds for inhibitors of RelMtb and showed that the lead compound X9 was able to directly kill nutrient-starved M. tuberculosis and enhanced the killing activity of isoniazid. Inhibition of RelMtb is a promising approach to target M. tuberculosis persisters, with the potential to shorten the duration of TB treatment.This work was supported by R01AI083125, R21AI122922, and R21AI114507A to P.C.

    GHIA (Grupo de Herramientas Interactivas Avanzadas)

    Full text link
    Es este documento se resumen las principales líneas actuales de investigación del grupo GHIA en lo que a informática educativa se refiere, así como su contexto y proyectos de futuro.This document summarizes the main research areas of GHIA regarding computer based learning, as well as its context and future work.En el momento actual, agradecemos su apoyo a los proyectos ASIES (TIN2010-17344) y Go-Lite (TIN2011-24139), financiados por el Ministerio de Educación, y al proyecto e-Madrid (S2009/TIC-1650), financiado por la Comunidad Autónoma de Madrid
    corecore