966 research outputs found

    Hawaii quasar and T dwarf survey. I. Method and discovery of faint field ultracool dwarfs

    Get PDF
    The Hawaii Quasar and T dwarf survey (HQT Survey) is a wide-field, red optical survey carried out with the Suprime-Cam mosaic CCD camera on the 8.2 m Subaru telescope. The HQT survey is designed to search for low-luminosity (M_(AB1450) 5.7) as well as T dwarfs, both of which are selected by their very red I − z' colors. We use an optical narrowband filter NB816 to break a well-known I − z' color degeneracy between high-z quasars and foreground M and L dwarfs, which are more numerous than quasars. This paper is the first in a series of papers from the HQT survey and we report on the discovery of six faint (19 ≤ J ≤ 20) ultracool dwarfs found over a ~9.3 deg^2 area with a limiting magnitude of z'_(AB) ≤ 23.3. These dwarfs were confirmed by near-IR imaging and/or spectroscopy conducted at various facilities on Mauna Kea. With estimated distances of 60–170 pc, these are among the most distant spectroscopically confirmed field brown dwarfs to date. Limits on the proper motions of these ultracool dwarfs suggest that they are old members of the Galactic disk, though future follow-up observations are necessary to minimize errors. Our finding rate of ultracool dwarfs is within model predictions of Liu et al. However, the large brightening amplitude (~1 mag) previously reported for the L/T transition objects appears to overpredict the numbers. We also examine how the survey field latitude affects the survey sensitivity to the vertical scale height of ultracool dwarfs

    Discharge, Relaxation, and Charge Model for the Lithium Trivanadate Electrode: Reactions, Phase Change, and Transport

    Get PDF
    The electrochemical behavior of lithium trivanadate (LiV3O8) during lithiation, delithiation, and voltage recovery experiments is simulated using a crystal-scale model that accounts for solid-state diffusion, charge-transfer kinetics, and phase transformations. The kinetic expression for phase change was modeled using an approach inspired by the Avrami formulation for nucleation and growth. Numerical results indicate that the solid-state diffusion coefficient of lithium in LiV3O8 is ∼10−13 cm2 s−1 and the equilibrium compositions in the two phase region (∼2.5 V) are Li2.5V3O8:Li4V3O8. Agreement between the simulated and experimental results is excellent. Relative to the lithiation curves, the experimental delithiation curves show significantly less overpotential at low levels of lithiation (end of charge). Simulations are only able to capture this result by assuming that the solid-state mass-transfer resistance is less during delithiation. The proposed rationale for this difference is that the (100) face is inactive during lithiation, but active during delithiation. Finally, by assuming non-instantaneous phase-change kinetics, estimates are made for the overpotential due to imperfect phase change (supersaturation)

    Asynchronous warming and δ18O evolution of deep Atlantic water masses during the last deglaciation

    Get PDF
    Author Posting. Š The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 114 (2017): 11075-11080, doi: 10.1073/pnas.1704512114.The large-scale reorganization of deep-ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ18O of benthic foraminiferal calcite (δ18Oc). Here we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ18O evolution. Model results suggest that in response to North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties due to freshwater input as suggested previously, the observed phasing difference of deep δ18Oc likely reflects early warming of the deep northern North Atlantic by ~1.4°C while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong mid-depth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way ocean circulation affects heat, a dynamic tracer, is considerably different than how it affects passive tracers like δ18O, and call for caution when inferring water mass changes from δ18Oc records while assuming uniform changes in deep temperatures.This work is supported by the U.S. NSF P2C2 projects (1401778 and 1401802) and OCE projects (1600080 and 1566432), China NSFC 41630527, and the Wisconsin Alumni Research Foundatio

    A Search for Variability in Exoplanet Analogues and Low-Gravity Brown Dwarfs

    Get PDF
    We report the results of a JJ-band survey for photometric variability in a sample of young, low-gravity objects using the New Technology Telescope (NTT) and the United Kingdom InfraRed Telescope (UKIRT). Surface gravity is a key parameter in the atmospheric properties of brown dwarfs and this is the first large survey that aims to test the gravity dependence of variability properties. We do a full analysis of the spectral signatures of youth and assess the group membership probability of each target using membership tools from the literature. This results in a 30 object sample of young low-gravity brown dwarfs. Since we are lacking in objects with spectral types later than L9, we focus our statistical analysis on the L0-L8.5 objects. We find that the variability occurrence rate of L0-L8.5 low-gravity brown dwarfs in this survey is 30−8+16%30^{+16}_{-8}\%. We reanalyse the results of Radigan 2014 and find that the field dwarfs with spectral types L0-L8.5 have a variability occurrence rate of 11−4+13%11^{+13}_{-4}\%. We determine a probability of 98%98\% that the samples are drawn from different distributions. This is the first quantitative indication that the low-gravity objects are more likely to be variable than the field dwarf population. Furthermore, we present follow-up JSJ_S and KSK_S observations of the young, planetary-mass variable object PSO 318.5-22 over three consecutive nights. We find no evidence of phase shifts between the JSJ_S and KSK_S bands and find higher JSJ_S amplitudes. We use the JSJ_S lightcurves to measure a rotational period of 8.45±0.05 8.45\pm0.05~hr for PSO 318.5-22.Comment: accepted for publication in MNRA

    Investigating the Direct Meltwater Effect in Terrestrial Oxygenâ Isotope Paleoclimate Records Using an Isotopeâ Enabled Earth System Model

    Full text link
    Variations in terrestrial oxygenâ isotope reconstructions from ice cores and speleothems have been primarily attributed to climatic changes of surface air temperature, precipitation amount, or atmospheric circulation. Here we demonstrate with the fully coupled isotopeâ enabled Community Earth System Model an additional process contributing to the oxygenâ isotope variations during glacial meltwater events. This process, termed â the direct meltwater effect,â involves propagating large amounts of isotopically depleted meltwater throughout the hydrological cycle and is independent of climatic changes. We find that the direct meltwater effect can make up 15â 35% of the δ18O signals in precipitation over Greenland and eastern Brazil for large freshwater forcings (0.25â 0.50 sverdrup (106 m3/s)). Model simulations further demonstrate that the direct meltwater effect increases with the magnitude and duration of the freshwater forcing and is sensitive to both the location and shape of the meltwater. These new modeling results have important implications for past climate interpretations of δ18O.Key PointsA portion of the δ18O signal in landâ based paleoclimate proxies can be attributed to the direct meltwater effect instead of climatic changesThe direct meltwater effect can make up 15â 35% of the δ18O signals in precipitation in Greenland and eastern Brazil for large meltwater eventsThe direct meltwater effect increases with the magnitude and duration of the freshwater forcing and is sensitive to location and shape dependentPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141374/1/grl56782_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141374/2/grl56782-sup-0001-Supporting_Information.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141374/3/grl56782.pd

    Kaluza-Klein Cosmology With Modified Holographic Dark Energy

    Full text link
    We investigate the compact Kaluza-Klein cosmology in which modified holographic dark energy is interacting with dark matter. Using this scenario, we evaluate equation of state parameter as well as equation of evolution of the modified holographic dark energy. Further, it is shown that the generalized second law of thermodynamics holds without any constraint.Comment: 13 pages, accepted for publication in Gen. Relativ. Gravi
    • …
    corecore