62 research outputs found

    Local ciliate communities associated with aquatic macrophytes

    Get PDF
    This study, based within the catchment area of the River Frome, an important chalk stream in the south of England, compared ciliated protozoan communities associated with three species of aquatic macrophyte common to lotic habitats: Ranunculus penicillatus subsp. pseudofluitans, Nasturtium officinale and Sparganium emersum. A total of 77 ciliate species were counted. No species-specific ciliate assemblage was found to be typical of any one plant species. Ciliate abundance between plant species was determined to be significantly different. The ciliate communities from each plant species were unique in that the number of species increased with ciliate abundance. The community associated with R. penicillatus subsp. pseudofluitans showed the highest consistency and species richness whereas S. emersum ciliate communities were unstable. Most notably, N. officinale was associated with low ciliate abundances and an apparent reduction in biofilm formation, discussed herein in relation to the plant’s production of the microbial toxin phenethyl isothiocyanate. We propose that the results reflect differences in the quantity and quality of biofilm present on the plants, which could be determined by the different plant morphologies, patterns of plant decay and herbivore defense systems, all of which suppress or promote the various conditions for biofilm growth

    Carta al Presidente

    Get PDF

    New observations of the colpodid ciliate Ottowphrya dragescoi (Ciliophora, Colpodea, Platyophryida, Ottowphryidae) and its confusing taxonomic history

    Get PDF
    This paper describes a new population of Ottowphrya dragescoi isolated from moss samples in the UK. Its size in vivo is 70-110 x 35-60 μm. Its oral and somatic infraciliature were revealed with silver-carbonate impregnation, which showed 4-7 adoral organelles, and 27-34 somatic kineties. Thus far, three populations have been described in the scientific literature: one German, one from Austria and a Finnish population in addition to specimens from France, Australia and Kenya. The English population, described here, is quite similar to the one from Finland. Our data confirm the observations made by Foissner (2002) and highlight the taxonomic difficulties in establishing new genera and specie

    Local ciliate communities associated with aquatic macrophytes

    Get PDF
    This study, based within the catchment area of the River Frome, an important chalk stream in the south of England, compared ciliated protozoan communities associated with three species of aquatic macrophyte common to lotic habitats: Ranunculus penicillatus subsp. pseudofluitans, Nasturtium officinale and Sparganium emersum. A total of 77 ciliate species were counted. No species-specific ciliate assemblage was found to be typical of any one plant species. Ciliate abundance between plant species was determined to be significantly different. The ciliate communities from each plant species were unique in that the number of species increased with ciliate abundance. The community associated with R. penicillatus subsp. pseudofluitans showed the highest consistency and species richness whereas S. emersum ciliate communities were unstable. Most notably, N. officinale was associated with low ciliate abundances and an apparent reduction in biofilm formation, discussed herein in relation to the plant’s production of the microbial toxin phenethyl isothiocyanate. We propose that the results reflect differences in the quantity and quality of biofilm present on the plants, which could be determined by the different plant morphologies, patterns of plant decay and herbivore defense systems, all of which suppress or promote the various conditions for biofilm growth. [Int Microbiol 2014; 17(1):31-40]Keywords: Ranunculus · Nasturtium · toxin phenethyl isothiocyanate (PEITC) · biofilms · macrophytes · ciliates · microbial biodiversit

    Diversity of free-living ciliates in the sandy sediment of a Spanish stream in winter

    Get PDF
    This study had two objectives: to determine the number of (phenotypic) ciliate species co-existing in 1 m2 of sandy river sediment at a maximum temperature of 4 "C; and to determine the ecological mechanism(s) facilitating their co-existence. The ciliate community was diverse (65 species [8 of which are new], belonging to 50 genera, from 17 orders). The sediment supported a superficial mat of diatoms (> 30 species). These served as food for at least 16 ciliate species. The size frequency distribution of ingested diatoms was almost identical to that for the diatoms in the sediment: thus the probability of a diatom being ingested appears to be a simple function of its relative abundance. Two factors were probably important for the co-existence of ciliate species : wide variation in cell size and shape enabled them to occupy most habitats; and they deployed a variety of feeding mechanisms to consume the variety of microbial food types. Taken as a whole, the ciliate community was capable of feeding on all microbes, including other protozoa, up to a size of about 80 pm. Considering the broad diversity of ciliate habitats available within 1 m2, the importance of physical transport processes in the river basin, and the known cosmopolitan distribution of many ciliate species, it is believed likely that the species richness we recorded is representative of the expanse of sandy sediment in this river, on this occasion

    Molecular Probe Optimization to Determine Cell Mortality in a Photosynthetic Organism (Microcystis aeruginosa) Using Flow Cytometry

    Get PDF
    Microbial sub populations in field and laboratory studies have been shown to display high heterogeneity in morphological and physiological parameters. Determining the real time state of a microbial cell goes beyond live or dead categories, as microbes can exist in a dormant state, whereby cell division and metabolic activities are reduced. Given the need for detection and quantification of microbes, flow cytometry (FCM) with molecular probes provides a rapid and accurate method to help determine overall population viability. By using SYTOX Green and SYTOX Orange in the model cyanobacteria Microcystis aeruginosa to detect membrane integrity, we develop a transferable method for rapid indication of single cell mortality. The molecular probes used within this journal will be referred to as green or orange nucleic acid probes respectively (although there are other products with similar excitation and emission wavelengths that have a comparable modes of action, we specifically refer to the fore mentioned probes). Protocols using molecular probes vary between species, differing principally in concentration and incubation times. Following this protocol set out on M.aeruginosa the green nucleic acid probe was optimized at concentrations of 0.5 μM after 30 min of incubation and the orange nucleic acid probe at 1 μM after 10 min. In both probes concentrations less than the stated optimal led to an under reporting of cells with membrane damage. Conversely, 5 μM concentrations and higher in both probes exhibited a type of non-specific staining, whereby 'live' cells produced a target fluorescence, leading to an over representation of 'non-viable' cell numbers. The positive controls (heat killed) provided testable dead biomass, although the appropriateness of control generation remains subject to debate. By demonstrating a logical sequence of steps for optimizing the green and orange nucleic acid probes we demonstrate how to create a protocol that can be used to analyse cyanobacterial physiological state effectively

    New records of the ectoparasitic flagellate Colpodella gonderi on non-Colpoda ciliates

    Get PDF
    Colpodella gonderi is the only ectoparasitic flagellate of ciliated protozoa described thus far. This investigation reveals new records of C. gonderi retrieved from soil samples in southern Scotland, UK. Of fourteen ciliates species identified in one single occasion, three of them, Colpoda steinii, Pseudoplatyophrya nana and Grossglockneria acuta, were infested with the parasite. These results provide further evidence that C. gonderi is not host-specific of the ciliate genus Colpoda
    corecore