664 research outputs found

    Performance of a family of omni and steered antennas for mobile satellite applications

    Get PDF
    The design and performance of a family of vehicle antennas developed at JPL in support of an emerging US Mobile Satellite Service (MSS) system are described. Test results of the antennas are presented. Trends for future development are addressed. Recommendations on design approaches for vehicle antennas of the first generation MSS are discussed

    Hyperbolic Equations for Vacuum Gravity Using Special Orthonormal Frames

    Full text link
    By adopting Nester's higher dimensional special orthonormal frames (HSOF) the tetrad equations for vacuum gravity are put into first order symmetric hyperbolic (FOSH) form with constant coefficients, independent of any time slicing or coordinate specialization.Comment: 14 pages, 3 figures, LaTeX, 13 macros. CQG 14 (1997) 1237-1247 has algebraic errors. +/- signs in Equations (2), (4) and (5) are here corrected, and factors of 2 added to Eqs. (18) and (19

    Modulator noise suppression in the LISA Time-Delay Interferometric combinations

    Full text link
    We previously showed how the measurements of some eighteen time series of relative frequency or phase shifts could be combined (1) to cancel the phase noise of the lasers, (2) to cancel the Doppler fluctuations due to non-inertial motions of the six optical benches, and (3) to remove the phase noise of the onboard reference oscillators required to track the photodetector fringes, all the while preserving signals from passinggravitational waves. Here we analyze the effect of the additional noise due to the optical modulators used for removing the phase fluctuations of the onboard reference oscillators. We use a recently measured noise spectrum of an individual modulator to quantify the contribution of modulator noise to the first and second-generation Time-Delay Interferometric (TDI) combinations as a function of the modulation frequency. We show that modulator noise can be made smaller than the expected proof-mass acceleration and optical-path noises if the modulation frequencies are larger than ≈682\approx 682 MHz in the case of the unequal-arm Michelson TDI combination X1X_1, ≈1.08\approx 1.08 GHz for the Sagnac TDI combination α1\alpha_1, and ≈706\approx 706 MHz for the symmetrical Sagnac TDI combination ζ1\zeta_1. These modulation frequencies are substantially smaller than previously estimated and may lead to less stringent requirements on the LISA's oscillator noise calibration subsystem.Comment: 17 pages, 5 figures. Submitted to: Phys. Rev. D 1

    Conservation laws for vacuum tetrad gravity

    Full text link
    Ten conservation laws in useful polynomial form are derived from a Cartan form and Exterior Differential System (EDS) for the tetrad equations of vacuum relativity. The Noether construction of conservation laws for well posed EDS is introduced first, and an illustration given, deriving 15 conservation laws of the free field Maxwell Equations from symmetries of its EDS. The Maxwell EDS and tetrad gravity EDS have parallel structures, with their numbers of dependent variables, numbers of generating 2-forms and generating 3-forms, and Cartan character tables all in the ratio of 1 to 4. They have 10 corresponding symmetries with the same Lorentz algebra, and 10 corresponding conservation laws.Comment: Final version with additional reference

    Optical scalars in spherical spacetimes

    Get PDF
    Consider a spherically symmetric spacelike slice through a spherically symmetric spacetime. One can derive a universal bound for the optical scalars on any such slice. The only requirement is that the matter sources satisfy the dominant energy condition and that the slice be asymptotically flat and regular at the origin. This bound can be used to derive new conditions for the formation of apparent horizons. The bounds hold even when the matter has a distribution on a shell or blows up at the origin so as to give a conical singularity

    Improving the Sensitivity of LISA

    Get PDF
    It has been shown in the past, that the six Doppler data streams obtained LISA configuration can be combined by appropriately delaying the data streams for cancelling the laser frequency noise. Raw laser noise is several orders of magnitude above the other noises and thus it is essential to bring it down to the level of shot, acceleration noises. A rigorous and systematic formalism using the techniques of computational commutative algebra was developed which generates all the data combinations cancelling the laser frequency noise. The relevant data combinations form a first module of syzygies. In this paper we use this formalism for optimisation of the LISA sensitivity by analysing the noise and signal covariance matrices. The signal covariance matrix, averaged over polarisations and directions, is calculated for binaries whose frequency changes at most adiabatically. We then present the extremal SNR curves for all the data combinations in the module. They correspond to the eigenvectors of the noise and signal covariance matrices. We construct LISA `network' SNR by combining the outputs of the eigenvectors which improves the LISA sensitivity substantially. The maximum SNR curve can yield an improvement upto 70 % over the Michelson, mainly at high frequencies, while the improvement using the network SNR ranges from 40 % to over 100 %. Finally, we describe a simple toy model, in which LISA rotates in a plane. In this analysis, we estimate the improvement in the LISA sensitivity, if one switches from one data combination to another as it rotates. Here the improvement in sensitivity, if one switches optimally over three cyclic data combinations of the eigenvector is about 55 % on an average over the LISA band-width. The corresponding SNR improvement is 60 %, if one maximises over the module.Comment: 16 pages, 10 figures, Submitted to Class. Quant. Gravit

    Zero curvature representation for a new fifth-order integrable system

    Full text link
    In this brief note we present a zero-curvature representation for one of the new integrable system found by Mikhailov, Novikov and Wang in nlin.SI/0601046.Comment: 2 pages, LaTeX 2e, no figure

    Time asymmetric spacetimes near null and spatial infinity. I. Expansions of developments of conformally flat data

    Full text link
    The Conformal Einstein equations and the representation of spatial infinity as a cylinder introduced by Friedrich are used to analyse the behaviour of the gravitational field near null and spatial infinity for the development of data which are asymptotically Euclidean, conformally flat and time asymmetric. Our analysis allows for initial data whose second fundamental form is more general than the one given by the standard Bowen-York Ansatz. The Conformal Einstein equations imply upon evaluation on the cylinder at spatial infinity a hierarchy of transport equations which can be used to calculate in a recursive way asymptotic expansions for the gravitational field. It is found that the the solutions to these transport equations develop logarithmic divergences at certain critical sets where null infinity meets spatial infinity. Associated to these, there is a series of quantities expressible in terms of the initial data (obstructions), which if zero, preclude the appearance of some of the logarithmic divergences. The obstructions are, in general, time asymmetric. That is, the obstructions at the intersection of future null infinity with spatial infinity are different, and do not generically imply those obtained at the intersection of past null infinity with spatial infinity. The latter allows for the possibility of having spacetimes where future and past null infinity have different degrees of smoothness. Finally, it is shown that if both sets of obstructions vanish up to a certain order, then the initial data has to be asymptotically Schwarzschildean to some degree.Comment: 32 pages. First part of a series of 2 papers. Typos correcte

    Sensitivity and parameter-estimation precision for alternate LISA configurations

    Get PDF
    We describe a simple framework to assess the LISA scientific performance (more specifically, its sensitivity and expected parameter-estimation precision for prescribed gravitational-wave signals) under the assumption of failure of one or two inter-spacecraft laser measurements (links) and of one to four intra-spacecraft laser measurements. We apply the framework to the simple case of measuring the LISA sensitivity to monochromatic circular binaries, and the LISA parameter-estimation precision for the gravitational-wave polarization angle of these systems. Compared to the six-link baseline configuration, the five-link case is characterized by a small loss in signal-to-noise ratio (SNR) in the high-frequency section of the LISA band; the four-link case shows a reduction by a factor of sqrt(2) at low frequencies, and by up to ~2 at high frequencies. The uncertainty in the estimate of polarization, as computed in the Fisher-matrix formalism, also worsens when moving from six to five, and then to four links: this can be explained by the reduced SNR available in those configurations (except for observations shorter than three months, where five and six links do better than four even with the same SNR). In addition, we prove (for generic signals) that the SNR and Fisher matrix are invariant with respect to the choice of a basis of TDI observables; rather, they depend only on which inter-spacecraft and intra-spacecraft measurements are available.Comment: 17 pages, 4 EPS figures, IOP style, corrected CQG versio
    • 

    corecore