122 research outputs found

    Nanoenergetic Materials for MEMS: A Review

    Get PDF
    New energetic materials (EMs) are the key to great advances in microscale energy-demanding systems as actuation part, igniter, propulsion unit, and power. Nanoscale EMs (nEMs)particularly offer the promise of much higher energy densities, faster rate of energy release, greater stability, and more security sensitivity to unwanted initiation). nEMs could therefore give response to microenergetics challenges. This paper provides a comprehensive review of current research activities in nEMs for microenergetics application. While thermodynamic calculations of flame temperature and reaction enthalpies are tools to choose desirable EMs, they are not sufficient for the choice of good material for microscale application where thermal losses are very penalizing. A strategy to select nEM is therefore proposed based on an analysis of the material diffusivity and heat of reaction. Finally, after a description of the different nEMs synthesis approaches, some guidelines for future investigations are provided

    Multi-scale modelling of silicon nanocrystal synthesis by Low Pressure Chemical Vapor Deposition.

    Get PDF
    A multi-scale model has been developed in order to represent the nucleation and growth phenomena taking place during silicon nanocrystal (NC) synthesis on SiO2 substrates by Low Pressure Chemical Vapor Deposition from pure silane SiH4. Intrinsic sticking coefficients and H2 desorption kinetic parameters were established by ab initio modelling for the first three stages of silicon chemisorption on SiO2 sites, i.e. silanol Si―OH bonds and siloxane Si―O―Si bridges. This ab initio study has revealed that silane cannot directly chemisorb on SiO2 sites, the first silicon chemisorption proceeds from homogeneously born unsaturated species like silylene SiH2. These kinetic data were implemented into the Computational Fluid Dynamics Fluent code at the industrial reactor scale, by activating its system of surface site control in transient conditions. NC area densities and radii deduced from Fluent calculations were validated by comparison with experimental data. Information about the deposition mechanisms was then obtained. In particular, hydrogen desorption has been identified as the main limiting step of NC nucleation and growth, and the NC growth rate highly increases with run duration due to the autocatalytic nature of deposition

    Transcription factor LSF facilitiates lysine methylation of α-tubulin by microtubule-associated SET8

    Get PDF
    Microtubules are critical for mitosis, cell motility, and protein and organelle transport, and are a validated target for anticancer drugs. However, tubulin regulation and recruitment in these cellular processes is less understood. Post-translational modifications of tubulin are proposed to regulate microtubule functions and dynamics. Although many such modifications have been investigated, tubulin methylations and enzymes responsible for methylation have only recently begun to be described. Here we report that N-lysine methyl transferase KMT5A (SET8/PR-Set7), which methylates histone H4K20, also methylates α-tubulin. Furthermore, the transcription factor LSF binds both tubulin and SET8, and enhances α-tubulin methylation in vitro, countered by FQI1, a specific small molecule inhibitor of LSF. Thus, the three proteins SET8, LSF, and tubulin, all essential for mitotic progression, interact with each other. Overall, these results point to dual functions for both SET8 and LSF not only in chromatin regulation, but also for cytoskeletal modification.First author draf

    Multilayered Al/CuO thermite formation by reactive magnetron sputtering: Nano versus micro

    Get PDF
    Multilayered Al/CuO thermite was deposited by a dc reactive magnetron sputtering method. Pure Al and Cu targets were used in argon–oxygen gas mixture plasma and with an oxygen partial pressure of 0.13 Pa. The process was designed to produce low stress (<50 MPa) multilayered nanoenergetic material, each layer being in the range of tens nanometer to one micron. The reaction temperature and heat of reaction were measured using differential scanning calorimetry and thermal analysis to compare nanostructured layered materials to microstructured materials. For the nanostructured multilayers, all the energy is released before the Al melting point. In the case of the microstructured samples at least 2/3 of the energy is released at higher temperatures, between 1036 and 1356 K

    Towards multiscale modeling of Si nanocrystals LPCVD deposition on SiO2: From ab initio calculations to reactor scale simulations

    Get PDF
    A modeling study is presented involving calculations at continuum and atomistic (DFT, Density Functional Theory) levels so as to better understand mechanisms leading to silicon nanocrystals (NC) nucleation and growth on SiO2 silicon dioxide surface, by Low Pressure Chemical Vapor Deposition (LPCVD) from silane SiH4. Calculations at the industrial reactor scale show that a promising way to improve reproducibility and uniformity of NC deposition at short term could be to increase deposition time by highly diluting silane in a carrier gas. This dilution leads to a decrease of silane deposition rate and to a marked increase of the contribution to deposition of unsaturated species such as silylene SiH2. This result gives importance to our DFT calculations since they reveal that only silylene (and probably other unsaturated species) are involved in the very first steps of nucleation i.e. silicon chemisorption on silanol Si–OH or siloxane Si–O–Si bonds present on SiO2 substrates. Saturated molecules such as silane could only contribute to NC growth, i.e. chemisorption on already deposited silicon bonds, since their decomposition activation barriers on SiO2 surface are as high as 3 eV

    Automethylation of G9a and its implication in wider substrate specificity and HP1 binding.

    Get PDF
    Methylation of lysine residues on histones participates in transcriptional gene regulation. Lysine 9 methylation of histone H3 is a transcriptional repression signal, mediated by a family of SET domain containing AdoMet-dependent enzymes. G9a methyltransferase is a euchromatic histone H3 lysine 9 methyltransferase. Here, G9a is shown to methylate other cellular proteins, apart from histone H3, including automethylation of K239 residue. Automethylation of G9a did not impair or activate the enzymatic activity in vitro. The automethylation motif of G9a flanking target K239 (ARKT) has similarity with histone H3 lysine 9 regions (ARKS), and is identical to amino acids residues in EuHMT (ARKT) and mAM (ARKT). Under steady-state kinetic assay conditions, full-length G9a methylates peptides representing ARKS/T motif of H3, G9a, mAM and EuHMT efficiently. Automethylation of G9a at ARKT motif creates a binding site for HP1 class of protein and mutation of lysine in the motif impairs this binding. In COS-7 cells GFP fusion of the wild-type G9a co-localized with HP1alpha and HP1gamma isoforms whereas the G9a mutant with K239A displayed poor co-localization. Thus, apart from transcriptional repression and regulatory roles of lysine methylation, the non-histone protein methylation may create binding sites for cellular protein-protein interactions

    PKC isoforms interact with and phosphorylate DNMT1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA methyltransferase 1 (DNMT1) has been shown to be phosphorylated on multiple serine and threonine residues, based on cell type and physiological conditions. Although recent studies have suggested that protein kinase C (PKC) may be involved, the individual contribution of PKC isoforms in their ability to phosphorylate DNMT1 remains unknown. The PKC family consists of at least 12 isoforms that possess distinct differences in structure, substrate requirement, expression and localization.</p> <p>Results</p> <p>Here we show that PKCα, βI, βII, δ, γ, η, ζ and μ preferentially phosphorylate the N-terminal domain of human DNMT1. No such phosphorylation of DNMT1 was observed with PKCε. Using PKCζ as a prototype model, we also found that PKC physically interacts with and phosphorylates DNMT1. <it>In vitro </it>phosphorylation assays conducted with recombinant fragments of DNMT1 showed that PKCζ preferentially phosphorylated the N-terminal region of DNMT1. The interaction of PKCζ with DNMT1 was confirmed by GST pull-down and co-immunoprecipitation experiments. Co-localization experiments by fluorescent microscopy further showed that endogenous PKCζ and DNMT1 were present in the same molecular complex. Endogenous PKCζ activity was also detected when DNMT1 was immunoprecipitated from HEK-293 cells. Overexpression of both PKCζ and DNMT1 in HEK-293 cells, but not of either alone, reduced the methylation status of genes distributed across the genome. Moreover, <it>in vitro </it>phosphorylation of DNMT1 by PKCζ reduced its methytransferase activity.</p> <p>Conclusions</p> <p>Our results indicate that phosphorylation of human DNMT1 by PKC is isoform-specific and provides the first evidence of cooperation between PKCζ and DNMT1 in the control of the DNA methylation patterns of the genome.</p

    Functional analysis of the N- and C-terminus of mammalian G9a histone H3 methyltransferase

    Get PDF
    Methylation of lysine 9 (K9) in the N-terminus tail of histone H3 (H3) in chromatin is associated with transcriptionally silenced genes and is mediated by histone methyltransferases. Murine G9a is a 1263 amino acid H3-K9 methyltransferase that possesses characteristic SET domain and ANK repeats. In this paper, we have used a series of green fluorescent protein-tagged deletion constructs to identify two nuclear localization signals (NLS), the first NLS embedded between amino acids 24 and 109 and the second between amino acids 394 and 401 of murine G9a. Our data show that both long and short G9a isoforms were capable of entering the nucleus to methylate chromatin. Full-length or N-terminus-deleted G9a isoforms were also catalytically active enzymes that methylated recombinant H3 or synthetic peptides representing the N-terminus tail of H3. In vitro methylation reactions using N-terminus tail peptides resulted in tri-methylation of K9 that remained processive, even in G9a enzymes that lacked an N-terminus region by deletion. Co-expression of G9a and H3 resulted in di- and tri-methylation of H3-K9, while siRNA-mediated knockdown of G9a in HeLa cells resulted in reduction of global H3-K9 di- and tri-methylation. A recombinant deletion mutant enzyme fused with maltose-binding protein (MBP-G9aΔ634) was used for steady-state kinetic analysis with various substrates and was compared with full-length G9a (G9aFL). Turnover numbers of MBP-G9aΔ634 for various substrates was ∼3-fold less compared with G9aFL, while their Michaelis constants (K(m)) for recombinant H3 were similar. The [Formula: see text] for MBP-G9aΔ634 was ∼2.3–2.65 μM with various substrates. Catalytic efficiencies (k(cat)/K(m)) for both MBP-G9aΔ634 and G9aFL were similar, suggesting that the N-terminus is not essential for catalysis. Furthermore, mutation of conserved amino acids R1097A, W1103A, Y1120A, Y1138A and R1162A, or the metal binding C1168A in the catalytic region, resulted in catalytically impaired enzymes, thereby confirming the involvement of the C-terminus of G9a in catalysis. Thus, distinct domains modulate nuclear targeting and catalytic functions of G9a

    High-Energy Al/CuO Nanocomposites Obtained by DNA-Directed Assembly

    Get PDF
    Over the next few years, it is expected that new, energetic, multifunctional materials will be engineered. There is a need for new methods to assemble such materials from manufactured nanopowders. In this article, we demonstrate a DNA-directed assembly procedure to produce highly energetic nanocomposites by assembling Al and CuO nanoparticles into micrometer-sized particles of an Al/CuO nanocomposite, which has exquisite energetic performance in comparison with its physically mixed Al/CuO counterparts. Using 80 nm Al nanoparticles, the heat of reaction and the onset temperature are 1.8 kJ g-1 and 410 degrees C, respectively. This experimental achievement relies on the development of simple and reliable protocols to disperse and sort metallic and metal oxide nanopowders in aqueous solution and the establishment of specific DNA surface-modification processes for Al and CuO nanoparticles. Overall, our work, which shows that DNA can be used as a structural material to assemble Al/Al, CuO/CuO and Al/CuO composite materials, opens a route for molecular engineering of the material on the nanoscale
    corecore