975 research outputs found

    Direct Detection of Non-Chiral Dark Matter

    Full text link
    Direct detection experiments rule out fermion dark matter that is a chiral representation of the electroweak gauge group. Non-chiral real, complex and singlet representations, however, provide viable fermion dark matter candidates. Although any one of these candidates will be virtually impossible to detect at the LHC, it is shown that they may be detected at future planned direct detection experiments. For the real case, an irreducible radiative coupling to quarks may allow a detection. The complex case in general has an experimentally ruled out tree-level coupling to quarks via Z-boson exchange. However, in the case of two SU(2)_L doublets, a higher dimensional coupling to the Higgs can suppress this coupling, and a remaining irreducible radiative coupling may allow a detection. Singlet dark matter could be detected through a coupling to quarks via Higgs exchange. Since all non-chiral dark matter can have a coupling to the Higgs, at least some of its mass can be obtained from electroweak symmetry breaking, and this mass is a useful characterization of its direct detection cross-section.Comment: 22 pages, 3 figures. References added. Minor corrections to match published versio

    Signatures of sub-GeV dark matter beams at neutrino experiments

    Full text link
    We study the high-luminosity fixed-target neutrino experiments at MiniBooNE, MINOS and T2K and analyze their sensitivity to light stable states, focusing on MeV--GeV scale dark matter. Thermal relic dark matter scenarios in the sub-GeV mass range require the presence of light mediators, whose coupling to the Standard Model facilitates annihilation in the early universe and allows for the correct thermal relic abundance. The mediators in turn provide a production channel for dark matter at colliders or fixed targets, and as a consequence the neutrino beams generated at fixed targets may contain an additional beam of light dark matter. The signatures of this beam include elastic scattering off electrons or nucleons in the (near-)detector, which closely mimics the neutral current scattering of neutrinos. We determine the event rate at modern fixed target facilities and the ensuing sensitivity to sub-GeV dark matter.Comment: 18 pages, 13 figures, revtex4-

    Selfish Dark Matter

    Full text link
    We present a mechanism where a particle asymmetry in one sector is used to generate an asymmetry in another sector. The two sectors are not coupled through particle number violating interactions and are not required to be in thermal contact with each other. When this mechanism is applied to baryogenesis in asymmetric dark matter models, we find that the dark matter particles can be extremely light, e.g. much lighter than an eV, and that in some cases there is no need to annihilate away the symmetric component of dark matter. We discuss a concrete realization of the mechanism with signals in direct detection, at the LHC, at BB-factories or future beam dump experiments.Comment: 18+5 pages, 2 figures; Journal version: Added references, small changes to the free-streaming length estimate

    Two Loop R-Symmetry Breaking

    Full text link
    We analyze two loop quantum corrections for pseudomoduli in O'Raifeartaigh like models. We argue that R-symmetry can be spontaneously broken at two loop in non supersymmetric vacua. We provide a basic example with this property. We discuss on phenomenological applications.Comment: 13 pages, 5 figures, JHEP3.cls, reference adde

    An Electron Fixed Target Experiment to Search for a New Vector Boson A' Decaying to e+e-

    Full text link
    We describe an experiment to search for a new vector boson A' with weak coupling alpha' > 6 x 10^{-8} alpha to electrons (alpha=e^2/4pi) in the mass range 65 MeV < m_A' < 550 MeV. New vector bosons with such small couplings arise naturally from a small kinetic mixing of the "dark photon" A' with the photon -- one of the very few ways in which new forces can couple to the Standard Model -- and have received considerable attention as an explanation of various dark matter related anomalies. A' bosons are produced by radiation off an electron beam, and could appear as narrow resonances with small production cross-section in the trident e+e- spectrum. We summarize the experimental approach described in a proposal submitted to Jefferson Laboratory's PAC35, PR-10-009. This experiment, the A' Experiment (APEX), uses the electron beam of the Continuous Electron Beam Accelerator Facility at Jefferson Laboratory (CEBAF) at energies of ~1-4 GeV incident on 0.5-10% radiation length Tungsten wire mesh targets, and measures the resulting e+e- pairs to search for the A' using the High Resolution Spectrometer and the septum magnet in Hall A. With a ~1 month run, APEX will achieve very good sensitivity because the statistics of e+e- pairs will be ~10,000 times larger in the explored mass range than any previous search for the A' boson. These statistics and the excellent mass resolution of the spectrometers allow sensitivity to alpha'/alpha one to three orders of magnitude below current limits, in a region of parameter space of great theoretical and phenomenological interest. Similar experiments could also be performed at other facilities, such as the Mainz Microtron.Comment: 19 pages, 12 figures, 2 table

    Jet diffuser for simulating ram conditions on a turbojet-engine static test stand

    Get PDF
    A jet diffuser for simulating flight or ram conditions on a turbojet-engine static test stand was designed and investigated. The diffuser utilizes the kinetic energy of the jet from a turbojet engine to reduce the discharge pressure at the exhaust nozzle and thereby provides simulated ram-pressure ratios across the engine. The engine exhaust nozzle discharges into an exhaust chamber (flexibly sealed to the tail pipe), which is connected to a diffuser by a bell-shaped nozzle. The pressure in the exhaust chamber is controlled independently of engine speed by a variable-area shutter at the diffuser discharge. The jet diffuser simulated ram-pressure ratios from 0.95 to 2.2 at various simulated pressure altitudes for a range of engine speeds from 85 to 100 percent of maximum rpm. Agreement of data obtained with and without the jet diffuser for a ram-pressure ratio of 1.0 indicated that the presence of the diffuser did not interfere with the flow through the engine exhaust-nozzle outlet

    R-symmetry and Supersymmetry Breaking at Finite Temperature

    Get PDF
    We analyze the spontaneous U(1)RU(1)_R symmetry breaking at finite temperature for the simple O'Raifeartaigh-type model introduced in [1] in connection with spontaneous supersymmetry breaking. We calculate the finite temperature effective potential (free energy) to one loop order and study the thermal evolution of the model. We find that the R-symmetry breaking occurs through a second order phase transition. Its associated meta-stable supersymmetry breaking vacuum is thermodynamically favored at high temperatures and the model remains trapped in this state by a potential barrier, as the temperature lowers all the way until T=0.Comment: 19 pages, 4 figures - Minor revisions, references added. To appear in JHE
    • …
    corecore