443 research outputs found

    Altitude Performance and Operational Characteristics of an XT38-A-2 Turboprop Engine

    Get PDF
    The overall engine performance and the starting and windmilling characteristics of an XT38-A-2 turboprop engine have been investigated in the NACA Lewis altitude wind tunnel. The simulated flight conditions ranged from altitudes of 5000 to 45,000 feet at a flight Mach number of 0.30 and from Mach numbers of 0.301 to 0.557 at an altitude of 35,000 feet. The engine, equipped with a standard-area exhaust nozzle, was operated with independent control of fuel flow and propeller pitch; operation was thereby allowed over a wide range of engine conditions. Windmilling characteristics were obtained at altitudes of 15,000 feet and 35,000 feet. Analysis of the performance maps obtained at each flight condition revealed that both altitude and flight Mach number had a major effect on corrected engine variables. The large reductions in corrected shaft horsepower occurring when the altitude was increased were the result of decreases in compressor and turbine efficiencies. Windmilling engine starts were made at altitudes as high as 35,000 feet at an engine speed of 2000 rpm

    Electrically Tunable Excitonic Light Emitting Diodes based on Monolayer WSe2 p-n Junctions

    Full text link
    Light-emitting diodes are of importance for lighting, displays, optical interconnects, logic and sensors. Hence the development of new systems that allow improvements in their efficiency, spectral properties, compactness and integrability could have significant ramifications. Monolayer transition metal dichalcogenides have recently emerged as interesting candidates for optoelectronic applications due to their unique optical properties. Electroluminescence has already been observed from monolayer MoS2 devices. However, the electroluminescence efficiency was low and the linewidth broad due both to the poor optical quality of MoS2 and to ineffective contacts. Here, we report electroluminescence from lateral p-n junctions in monolayer WSe2 induced electrostatically using a thin boron nitride support as a dielectric layer with multiple metal gates beneath. This structure allows effective injection of electrons and holes, and combined with the high optical quality of WSe2 it yields bright electroluminescence with 1000 times smaller injection current and 10 times smaller linewidth than in MoS2. Furthermore, by increasing the injection bias we can tune the electroluminescence between regimes of impurity-bound, charged, and neutral excitons. This system has the required ingredients for new kinds of optoelectronic devices such as spin- and valley-polarized light-emitting diodes, on-chip lasers, and two-dimensional electro-optic modulators.Comment: 13 pages main text with 4 figures + 4 pages upplemental material

    Thermal Evolution of the Non Supersymmetric Metastable Vacua in N=2 SU(2) SYM Softly Broken to N=1

    Full text link
    It has been shown that four dimensional N=2 gauge theories, softly broken to N=1 by a superpotential term, can accommodate metastable non-supersymmetric vacua in their moduli space. We study the SU(2) theory at high temperatures in order to determine whether a cooling universe settles in the metastable vacuum at zero temperature. We show that the corrections to the free energy because of the BPS dyons are such that may destroy the existence of the metastable vacuum at high temperatures. Nevertheless we demonstrate the universe can settle in the metastable vacuum, provided that the following two conditions are hold: first the superpotential term is not arbitrarily small in comparison to the strong coupling scale of the gauge theory, and second the metastable vacuum lies in the strongly coupled region of the moduli space.Comment: 32 pages, 30 figure

    Snowmass CF1 Summary: WIMP Dark Matter Direct Detection

    Get PDF
    As part of the Snowmass process, the Cosmic Frontier WIMP Direct Detection subgroup (CF1) has drawn on input from the Cosmic Frontier and the broader Particle Physics community to produce this document. The charge to CF1 was (a) to summarize the current status and projected sensitivity of WIMP direct detection experiments worldwide, (b) motivate WIMP dark matter searches over a broad parameter space by examining a spectrum of WIMP models, (c) establish a community consensus on the type of experimental program required to explore that parameter space, and (d) identify the common infrastructure required to practically meet those goals.Comment: Snowmass CF1 Final Summary Report: 47 pages and 28 figures with a 5 page appendix on instrumentation R&

    Stop the Top Background of the Stop Search

    Get PDF
    The main background for the supersymmetric stop direct production search comes from Standard Model ttbar events. For the single-lepton search channel, we introduce a few kinematic variables to further suppress this background by focusing on its dileptonic and semileptonic topologies. All are defined to have end points in the background, but not signal distributions. They can substantially improve the stop signal significance and mass reach when combined with traditional kinematic variables such as the total missing transverse energy. Among them, our variable M^W_T2 has the best overall performance because it uses all available kinematic information, including the on-shell mass of both W's. We see 20%-30% improvement on the discovery significance and estimate that the 8 TeV LHC run with 20 fb-1 of data would be able to reach an exclusion limit of 650-700 GeV for direct stop production, as long as the stop decays dominantly to the top quark and a light stable neutralino. Most of the mass range required for the supersymmetric solution of the naturalness problem in the standard scenario can be covered.Comment: 16 pages, 5 figure

    Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab

    Full text link
    This white paper summarizes the scientific opportunities for utilization of the upgraded 12 GeV Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab. It is based on the 52 proposals recommended for approval by the Jefferson Lab Program Advisory Committee.The upgraded facility will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics.Comment: 64 page

    Yukawa Unification and the Superpartner Mass Scale

    Full text link
    Naturalness in supersymmetry (SUSY) is under siege by increasingly stringent LHC constraints, but natural electroweak symmetry breaking still remains the most powerful motivation for superpartner masses within experimental reach. If naturalness is the wrong criterion then what determines the mass scale of the superpartners? We motivate supersymmetry by (1) gauge coupling unification, (2) dark matter, and (3) precision b-tau Yukawa unification. We show that for an LSP that is a bino-Higgsino admixture, these three requirements lead to an upper-bound on the stop and sbottom masses in the several TeV regime because the threshold correction to the bottom mass at the superpartner scale is required to have a particular size. For tan beta about 50, which is needed for t-b-tau unification, the stops must be lighter than 2.8 TeV when A_t has the opposite sign of the gluino mass, as is favored by renormalization group scaling. For lower values of tan beta, the top and bottom squarks must be even lighter. Yukawa unification plus dark matter implies that superpartners are likely in reach of the LHC, after the upgrade to 14 (or 13) TeV, independent of any considerations of naturalness. We present a model-independent, bottom-up analysis of the SUSY parameter space that is simultaneously consistent with Yukawa unification and the hint for m_h = 125 GeV. We study the flavor and dark matter phenomenology that accompanies this Yukawa unification. A large portion of the parameter space predicts that the branching fraction for B_s to mu^+ mu^- will be observed to be significantly lower than the SM value.Comment: 34 pages plus appendices, 20 figure
    corecore