3,203 research outputs found

    Test of renormalization predictions for universal finite-size scaling functions

    Full text link
    We calculate universal finite-size scaling functions for systems with an n-component order parameter and algebraically decaying interactions. Just as previously has been found for short-range interactions, this leads to a singular epsilon-expansion, where epsilon is the distance to the upper critical dimension. Subsequently, we check the results by numerical simulations of spin models in the same universality class. Our systems offer the essential advantage that epsilon can be varied continuously, allowing an accurate examination of the region where epsilon is small. The numerical calculations turn out to be in striking disagreement with the predicted singularity.Comment: 6 pages, including 3 EPS figures. To appear in Phys. Rev. E. Also available as PDF file at http://www.cond-mat.physik.uni-mainz.de/~luijten/erikpubs.htm

    Dimensional crossover in dipolar magnetic layers

    Full text link
    We investigate the static critical behaviour of a uniaxial magnetic layer, with finite thickness L in one direction, yet infinitely extended in the remaining d dimensions. The magnetic dipole-dipole interaction is taken into account. We apply a variant of Wilson's momentum shell renormalisation group approach to describe the crossover between the critical behaviour of the 3-D Ising, 2-d Ising, 3-D uniaxial dipolar, and the 2-d uniaxial dipolar universality classes. The corresponding renormalisation group fixed points are in addition to different effective dimensionalities characterised by distinct analytic structures of the propagator, and are consequently associated with varying upper critical dimensions. While the limiting cases can be discussed by means of dimensional epsilon expansions with respect to the appropriate upper critical dimensions, respectively, the crossover features must be addressed in terms of the renormalisation group flow trajectories at fixed dimensionality d.Comment: 25 pages, Latex, 12 figures (.eps files) and IOP style files include

    Incompatibility studies in Oenothera

    Full text link
    Es wird weiteres Material vorgelegt, um die allgemeine Aussage zu stützen, daß Inkompatibilitätsallele in allen phylogenetischen Gruppen der komplexheterozygoten Arten der nordamerikanischen Euoenothern zu finden sind. Eine Anzahl von Rassen der strigosa- biennis 2- , und parviflora -Gruppen scheinen Pollenletalfaktoren zu enthalten, welche die Entwicklung des Pollens verhindern, unabhängig von der Konstitution des Griffels, auf dem er sich befindet. Solche Letalfaktoren haben in den vorliegenden Versuchen die Entdeckung der Inkompatibilitätsallele verhindert, falls die letzteren in diesen Rassen vorhanden sein sollten.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47590/1/438_2004_Article_BF00888877.pd

    PP-waves with torsion and metric-affine gravity

    Full text link
    A classical pp-wave is a 4-dimensional Lorentzian spacetime which admits a nonvanishing parallel spinor field; here the connection is assumed to be Levi-Civita. We generalise this definition to metric compatible spacetimes with torsion and describe basic properties of such spacetimes. We use our generalised pp-waves for constructing new explicit vacuum solutions of quadratic metric-affine gravity.Comment: 17 pages, LaTeX2

    Host specificity in a diverse Neotropical tick community: an assessment using quantitative network analysis and host phylogeny

    Get PDF
    Background: Host specificity is a fundamental determinant of tick population and pathogen transmission dynamics, and therefore has important implications for human health. Tick host specificity is expected to be particularly high in the tropics, where communities of ticks, hosts and pathogens are most diverse. Yet the degree to which tropical tick species are host-specific remains poorly understood. Combining new field data with published records, we assessed the specificity of tick-host associations in Panama, a diverse Neotropical region. Methods: The resulting dataset includes 5,298 adult ticks belonging to 41 species of eight genera that were directly collected from 68 vertebrate host species of 17 orders. We considered three important aspects of tick host specificity: (i) the relative ecological importance of each host species (structural specificity); (ii) relatedness among host species (phylogenetic specificity); and (iii) spatial scale-dependence of tick-host relationships (geographical specificity). Applying quantitative network analyses and phylogenetic tools with null model comparisons, we assessed the structural and phylogenetic specificity across three spatial scales, ranging from central Panama to countrywide. Further, we tested whether species-rich tick genera parasitized a wider variety of hosts than species-poor genera, as expected when ticks specialize on different host species. Results: Most tick species showed high structural and/or phylogenetic specificity in the adult stage. However, after correcting for sampling effort, we found little support for geographical specificity. Across the three scales, adult ticks tended to be specific to a limited number of host species that were phylogenetically closely related. These host species in turn, were parasitized by tick species from distinct genera, suggesting switching among distantly related hosts is common at evolutionary timescales. Further, there was a strong positive relationship between the taxonomic richness of the tick genera and that of their hosts, consistent with distinct tick species being relatively specific to different host species. Conclusions: Our results indicate that in the adult stage, most ticks in the diverse Neotropical community studied are host specialists. This contrasts with earlier assessments, but agrees with findings from other host-parasite systems. High host specificity in adult ticks implies high susceptibility to local tick-host co-extirpation, limited ability to colonize new habitats and limited potential for interspecific pathogen transmission.Background: Host specificity is a fundamental determinant of tick population and pathogen transmission dynamics, and therefore has important implications for human health. Tick host specificity is expected to be particularly high in the tropics, where communities of ticks, hosts and pathogens are most diverse. Yet the degree to which tropical tick species are host-specific remains poorly understood. Combining new field data with published records, we assessed the specificity of tick-host associations in Panama, a diverse Neotropical region. Methods: The resulting dataset includes 5,298 adult ticks belonging to 41 species of eight genera that were directly collected from 68 vertebrate host species of 17 orders. We considered three important aspects of tick host specificity: (i) the relative ecological importance of each host species (structural specificity); (ii) relatedness among host species (phylogenetic specificity); and (iii) spatial scale-dependence of tick-host relationships (geographical specificity). Applying quantitative network analyses and phylogenetic tools with null model comparisons, we assessed the structural and phylogenetic specificity across three spatial scales, ranging from central Panama to countrywide. Further, we tested whether species-rich tick genera parasitized a wider variety of hosts than species-poor genera, as expected when ticks specialize on different host species. Results: Most tick species showed high structural and/or phylogenetic specificity in the adult stage. However, after correcting for sampling effort, we found little support for geographical specificity. Across the three scales, adult ticks tended to be specific to a limited number of host species that were phylogenetically closely related. These host species in turn, were parasitized by tick species from distinct genera, suggesting switching among distantly related hosts is common at evolutionary timescales. Further, there was a strong positive relationship between the taxonomic richness of the tick genera and that of their hosts, consistent with distinct tick species being relatively specific to different host species. Conclusions: Our results indicate that in the adult stage, most ticks in the diverse Neotropical community studied are host specialists. This contrasts with earlier assessments, but agrees with findings from other host-parasite systems. High host specificity in adult ticks implies high susceptibility to local tick-host co-extirpation, limited ability to colonize new habitats and limited potential for interspecific pathogen transmission

    Ion Temperatures in the Low Solar Corona: Polar Coronal Holes at Solar Minimum

    Full text link
    In the present work we use a deep-exposure spectrum taken by the SUMER spectrometer in a polar coronal hole in 1996 to measure the ion temperatures of a large number of ions at many different heights above the limb between 0.03 and 0.17 solar radii. We find that the measured ion temperatures are almost always larger than the electron temperatures and exhibit a non-monotonic dependence on the charge-to-mass ratio. We use these measurements to provide empirical constraints to a theoretical model of ion heating and acceleration based on gradually replenished ion-cyclotron waves. We compare the wave power required to heat the ions to the observed levels to a prediction based on a model of anisotropic magnetohydrodynamic turbulence. We find that the empirical heating model and the turbulent cascade model agree with one another, and explain the measured ion temperatures, for charge-to-mass ratios smaller than about 0.25. However, ions with charge-to-mass ratios exceeding 0.25 disagree with the model; the wave power they require to be heated to the measured ion temperatures shows an increase with charge-to-mass ratio (i.e., with increasing frequency) that cannot be explained by a traditional cascade model. We discuss possible additional processes that might be responsible for the inferred surplus of wave power.Comment: 11 pages (emulateapj style), 10 figures, ApJ, in press (v. 691, January 20, 2009

    Resistance and resilience of social–ecological systems to recurrent typhoon disturbance on a subtropical island: Taiwan

    Get PDF
    Tropical cyclones (TCs) have major effects on ecological and social systems. However, studies integrating the effects of TCs on both social and ecological systems are rare, especially in the northwest Pacific, where the frequency of TCs (locally named typhoons) is the highest in the world. We synthesized studies of effects of recurrent typhoons on social and ecological systems in Taiwan over the last several decades. Many responses to TCs are comparable between social and ecological systems. High forest ecosystem resistance, evident from tree mortality below 2% even following multiple strong typhoons, is comparable with resistance of social systems, including the only 4% destruction of river embankments following a typhoon that brought nearly 3000 mm rainfall in three days. High resilience as reflected by quick returns of leaf area index, mostly in one year, and streamwater chemistry, one to several weeks to pre‐typhoon levels of ecosystems, are comparable to quick repair of the power grid within one to several days and returns of vegetable price within several weeks to pre‐typhoon levels of the social systems. Landslides associated with intense typhoons have buried mountain villages and transported large quantities of woody debris to the coast, affecting the coastal plains and reefs, illustrating a ridge‐to‐reef link between ecological and societal systems. Metrics of both social and ecological function showed large fluctuations in response to typhoons but quickly returned to pre‐disturbance levels, except when multiple intense typhoons occurred within a single season. Our synthesis illustrates that the social–ecological systems in Taiwan are highly dynamic and responsive to frequent typhoon disturbance, with extraordinarily high resistance and resilience. For ecosystems, the efficient responsiveness results from the selective force of TCs on ecosystem structure and processes. For social systems, it is the result of the effects of TCs on planning and decision making by individuals (e.g., farmers), management sectors, and ultimately the government. In regions with frequent TCs, the social–ecological systems are inevitably highly dynamic and rapid responses are fundamental to system resistance and resilience which in turn is key to maintaining structure and function of the social–ecological systems

    Fuzzy cellular model for on-line traffic simulation

    Full text link
    This paper introduces a fuzzy cellular model of road traffic that was intended for on-line applications in traffic control. The presented model uses fuzzy sets theory to deal with uncertainty of both input data and simulation results. Vehicles are modelled individually, thus various classes of them can be taken into consideration. In the proposed approach, all parameters of vehicles are described by means of fuzzy numbers. The model was implemented in a simulation of vehicles queue discharge process. Changes of the queue length were analysed in this experiment and compared to the results of NaSch cellular automata model.Comment: The original publication is available at http://www.springerlink.co

    Measurement of polarization-transfer to bound protons in carbon and its virtuality dependence

    Full text link
    We measured the ratio Px/PzP_{x}/P_{z} of the transverse to longitudinal components of polarization transferred from electrons to bound protons in 12C^{12}\mathrm{C} by the 12C(e,ep)^{12}\mathrm{C}(\vec{e},e'\vec{p}) process at the Mainz Microtron (MAMI). We observed consistent deviations from unity of this ratio normalized to the free-proton ratio, (Px/Pz)12C/(Px/Pz)1H(P_{x}/P_{z})_{^{12}\mathrm{C}}/(P_{x}/P_{z})_{^{1}\mathrm{H}}, for both ss- and pp-shell knocked out protons, even though they are embedded in averaged local densities that differ by about a factor of two. The dependence of the double ratio on proton virtuality is similar to the one for knocked out protons from 2H^{2}\mathrm{H} and 4He^{4}\mathrm{He}, suggesting a universal behavior. It further implies no dependence on average local nuclear density

    Enhanced Immune Responses by Skin Vaccination with Influenza Subunit Vaccine in Young Hosts

    Get PDF
    Skin has gained substantial attention as a vaccine target organ due to its immunological properties, which include a high density of professional antigen presenting cells (APCs). Previous studies have demonstrated the effectiveness of this vaccination route not only in animal models but also in adults. Young children represent a population group that is at high risk from influenza infection. As a result, this group could ben- efit significantly from influenza vaccine delivery approaches through the skin and the improved immune response it can induce. In this study, we compared the immune responses in young BALB/c mice upon skin delivery of influenza vaccine with vaccination by the conventional intramuscular route. Young mice that received 5 fLg of H1N1 A/Ca/07/09 influenza subunit vaccine using MN demonstrated an improved serum antibody response (IgG1 and IgG2a) when compared to the young IM group, accompanied by higher numbers of influenza-specific antibody secreting cells (ASCs) in the bone marrow. In addition, we observed increased activation of follicular helper T cells and formation of germinal centers in the regional lymph nodes in the MN immunized group, rapid clearance of the virus from their lungs as well as complete survival, compared with partial protection observed in the IM-vaccinated group. Our results support the hypothesis that influenza vaccine delivery through the skin would be beneficial for protecting the high-risk young population from influenza infection
    corecore