17 research outputs found

    Educating Future Environmental Health Professionals

    Get PDF
    Future environmental health problems will require a new generation of educated and trained professionals. Efforts to enhance the environmental public health workforce have been promoted by several organizations. While progress has been measured by these organizations, many environmental health academic programs are experiencing budget reductions and lower enrollments. One of the reasons for this trend is the so-called higher education crisis. We argue that training is not equivalent to education in the environmental health sciences, albeit the two terms are often used interchangeably. Organizations involved with the education, training, and credentialing of environmental health professionals must work together to ensure the viability and effectiveness of environmental health academic programs

    Introduction

    No full text

    Burning of forest materials under late Paleozoic high atmospheric oxygen levels

    No full text
    Theoretical models suggest that atmospheric oxygen reached concentrations as high as 35% O2 during the past 550 m.y. Previous burning experiments using strips of paper have challenged this idea, concluding that ancient wildfires would have decimated plant life if O2 significantly exceeded its present level of 21 %. New thermochemistry and flame-spread experiments using natural fuels contradict these results and indicate that sustained burning of forest fuels at moisture contents common to living plants does not occur between 21% and 35% O2. Therefore, the fires under atmospheres with high oxygen concentrations would not have prevented the persistence of plant communities. Times of high O2 also agree with observations of concurrent fire-resistant plant morphology, large insects, and high concentrations of fossil charcoal
    corecore