12,999 research outputs found

    Singularity Theory in Classical Cosmology

    Full text link
    This paper compares recent approaches appearing in the literature on the singularity problem for space-times with nonvanishing torsion.Comment: 4 pages, plain-tex, published in Nuovo Cimento B, volume 107, pages 849-851, year 199

    Hydrodynamic limit of asymmetric exclusion processes under diffusive scaling in d≥3d\ge 3

    Full text link
    We consider the asymmetric exclusion process. We start from a profile which is constant along the drift direction and prove that the density profile, under a diffusive rescaling of time, converges to the solution of a parabolic equation

    Time-dependent spherically symmetric covariant Galileons

    Full text link
    We study spherically symmetric solutions of the cubic covariant Galileon model in curved spacetime in presence of a matter source, in the test scalar field approximation. We show that a cosmological time evolution of the Galileon field gives rise to an induced matter-scalar coupling, due to the Galileon-graviton kinetic braiding, therefore the solution for the Galileon field is non trivial even if the bare matter-scalar coupling constant is set to zero. The local solution crucially depends on the asymptotic boundary conditions, and in particular, Minkowski and de Sitter asymptotics correspond to different branches of the solution. We study the stability of these solutions, namely, the well-posedness of the Cauchy problem and the positivity of energy for scalar and tensor perturbations, by diagonalizing the kinetic terms of the spin-2 and spin-0 degrees of freedom. In addition, we find that in presence of a cosmological time evolution of the Galileon field, its kinetic mixing with the graviton leads to a friction force, resulting to efficient damping of scalar perturbations within matter.Comment: 20 pages, no figure, RevTeX4 format; v2: minor changes reflecting the published version in PR

    On the Zero-Point Energy of a Conducting Spherical Shell

    Get PDF
    The zero-point energy of a conducting spherical shell is evaluated by imposing boundary conditions on the potential, and on the ghost fields. The scheme requires that temporal and tangential components of perturbations of the potential should vanish at the boundary, jointly with the gauge-averaging functional, first chosen of the Lorenz type. Gauge invariance of such boundary conditions is then obtained provided that the ghost fields vanish at the boundary. Normal and longitudinal modes of the potential obey an entangled system of eigenvalue equations, whose solution is a linear combination of Bessel functions under the above assumptions, and with the help of the Feynman choice for a dimensionless gauge parameter. Interestingly, ghost modes cancel exactly the contribution to the Casimir energy resulting from transverse and temporal modes of the potential, jointly with the decoupled normal mode of the potential. Moreover, normal and longitudinal components of the potential for the interior and the exterior problem give a result in complete agreement with the one first found by Boyer, who studied instead boundary conditions involving TE and TM modes of the electromagnetic field. The coupled eigenvalue equations for perturbative modes of the potential are also analyzed in the axial gauge, and for arbitrary values of the gauge parameter. The set of modes which contribute to the Casimir energy is then drastically changed, and comparison with the case of a flat boundary sheds some light on the key features of the Casimir energy in non-covariant gauges.Comment: 29 pages, Revtex, revised version. In this last version, a new section has been added, devoted to the zero-point energy of a conducting spherical shell in the axial gauge. A second appendix has also been include

    Constraints on Shift-Symmetric Scalar-Tensor Theories with a Vainshtein Mechanism from Bounds on the Time Variation of G

    Full text link
    We show that the current bounds on the time variation of the Newton constant G can put severe constraints on many interesting scalar-tensor theories which possess a shift symmetry and a nonminimal matter-scalar coupling. This includes, in particular, Galileon-like models with a Vainshtein screening mechanism. We underline that this mechanism, if efficient to hide the effects of the scalar field at short distance and in the static approximation, can in general not alter the cosmological time evolution of the scalar field. This results in a locally measured time variation of G which is too large when the matter-scalar coupling is of order one.Comment: RevTeX4 format; v.2: 5 pages, title changed, matches published versio

    Heat kernel coefficients for chiral bag boundary conditions

    Full text link
    We study the asymptotic expansion of the smeared L2-trace of fexp(-tP^2) where P is an operator of Dirac type, f is an auxiliary smooth smearing function which is used to localize the problem, and chiral bag boundary conditions are imposed. Special case calculations, functorial methods and the theory of zeta and eta invariants are used to obtain the boundary part of the heat-kernel coefficients a1 and a2.Comment: Published in J. Phys. A38, 2259-2276 (2005). Record without file already exists on the SLAC recor

    Spectral asymptotics of Euclidean quantum gravity with diff-invariant boundary conditions

    Full text link
    A general method is known to exist for studying Abelian and non-Abelian gauge theories, as well as Euclidean quantum gravity, at one-loop level on manifolds with boundary. In the latter case, boundary conditions on metric perturbations h can be chosen to be completely invariant under infinitesimal diffeomorphisms, to preserve the invariance group of the theory and BRST symmetry. In the de Donder gauge, however, the resulting boundary-value problem for the Laplace type operator acting on h is known to be self-adjoint but not strongly elliptic. The latter is a technical condition ensuring that a unique smooth solution of the boundary-value problem exists, which implies, in turn, that the global heat-kernel asymptotics yielding one-loop divergences and one-loop effective action actually exists. The present paper shows that, on the Euclidean four-ball, only the scalar part of perturbative modes for quantum gravity are affected by the lack of strong ellipticity. Further evidence for lack of strong ellipticity, from an analytic point of view, is therefore obtained. Interestingly, three sectors of the scalar-perturbation problem remain elliptic, while lack of strong ellipticity is confined to the remaining fourth sector. The integral representation of the resulting zeta-function asymptotics is also obtained; this remains regular at the origin by virtue of a spectral identity here obtained for the first time.Comment: 25 pages, Revtex-4. Misprints in Eqs. (5.11), (5.14), (5.16) have been correcte

    Thermoelectric efficiency at maximum power in a quantum dot

    Get PDF
    We identify the operational conditions for maximum power of a nanothermoelectric engine consisting of a single quantum level embedded between two leads at different temperatures and chemical potentials. The corresponding thermodynamic efficiency agrees with the Curzon-Ahlborn expression up to quadratic terms in the gradients, supporting the thesis of universality beyond linear response.Comment: 4 pages, 3 figure
    • …
    corecore