104 research outputs found

    Cognitive behavioural systems

    Get PDF
    This book constitutes refereed proceedings of the COST 2102 International Training School on Cognitive Behavioural Systems held in Dresden, Germany, in February 2011. The 39 revised full papers presented were carefully reviewed and selected from various submissions. The volume presents new and original research results in the field of human-machine interaction inspired by cognitive behavioural human-human interaction features. The themes covered are on cognitive and computational social information processing, emotional and social believable Human-Computer Interaction (HCI) systems, behavioural and contextual analysis of interaction, embodiment, perception, linguistics, semantics and sentiment analysis in dialogues and interactions, algorithmic and computational issues for the automatic recognition and synthesis of emotional states

    Statistical moments of power spectrum: a fast tool for the classification of seismic events recorded on volcanoes

    Get PDF
    Abstract. Spectral analysis has been applied to almost thousand seismic events recorded at Vesuvius volcano (Naples, southern Italy) in 2018 with the aim to test a new tool for a fast event classification. We computed two spectral parameters, central frequency and shape factor, from the spectral moments of order 0, 1, and 2, for each event at seven seismic stations taking the mean among the three components of ground motion. The analyzed events consist of volcano-tectonic earthquakes, low frequency events and unclassified events (landslides, rockfall, thunders, quarry blasts, etc.). Most of them are of low magnitude, and/or low maximum signal amplitude, therefore the signal to noise ratio is very different between the low noise summit stations and the higher noise stations installed at low elevation around the volcano. The results of our analysis show that volcano-tectonic earthquakes and low frequency events are easily distinguishable through the spectral moments values, particularly at seismic stations closer to the epicenter. On the contrary, unclassified events show the spectral parameters values distributed in a broad range which overlap both the volcano-tectonic earthquakes and the low frequency events. Since the computation of spectral parameters is extremely easy and fast for a detected event, it may become an effective tool for event classification in observatory practice

    Geodetic deformation Across the Central Apennines from GPS Data in the time span 1999-2003

    Get PDF
    Abstract During the time span 1999-2003 was set up and repeatedly surveyed a not permanent GPS network located across one of the highest seismic areas of the central Apennines (Italy). The Central Apennine Geodetic Network (CA-GeoNet), extends across Umbria, Abruzzo, Marche and Lazio regions, in an area of ?180x130 km, from Tyrrhenian to the Adriatic sea. It consists in 125 GPS stations distributed at 3-5 km average grid and includes 7 permanent GPS stations operated by the Italian Space Agency (ASI) and the Istituto Nazionale di Geofisica and Vulcanologia (INGV). With the aim to estimate the active strain rate across this part of the chain, the GPS sites have been located on the main geological units of the area and across the typical basin and range structures, related with the main seismogenic faults. In this paper we show the network and the first results obtained for a subset of 23 stations that have been occupied at least during three repeated campaigns, in the time span 1999-2003. Data analysis, performed by Bernese 4.2 software, shows an extensional rate normal to the chain, in agreement with geological and seismic data. The strain rates in the inner chain are ranging from 12x10-9±11yr-1 to 16x10-9±11yr-1 and from -14x10-9±11yr-1 to -3x10-9±11yr-1. This result provides an improved estimation of the ongoing deformation of this area with respect to previous studies and is in agreement with the style of deformation inferred from seismicity and with the features of the main seismogenic sources from recent geological and seismological investigations

    Insight Into Campi Flegrei Caldera Unrest Through Seismic Tremor Measurements at Pisciarelli Fumarolic Field

    Get PDF
    Within a general volcanic unrest in the densely urbanized area of Campi Flegrei caldera (Italy) an increase in the activity of Pisciarelli hydrothermal area is occurring. The seismic amplitude of Pisciarelli fumarolic tremor is a proxy for the fluid emission rate of the entire Solfatara‐Pisciarelli hydrothermal system. The long‐term analysis indicates a significant increase, by a factor of ~3 of the fumarolic tremor amplitude since May 2017. This increment matches with the trend of geochemical and seismic parameters observed in Campi Flegrei, therefore highlighting that Pisciarelli is a key site to monitor the volcanic unrest underway in this high‐risk caldera. The analysis of data from three closely spaced seismic stations provided new clues about the source mechanism of the tremor. Analyzing the fumarolic tremor amplitude we could also identify an episode of enlargement of the emission area close to the main fumarole of Pisciarelli. We propose a monitoring system based on the fumarolic tremor analysis, which provides real‐time information on the Pisciarelli hydrothermal activity and therefore on the current unrest in Campi Flegrei caldera.Published5544-55554V. Processi pre-eruttiviJCR Journa

    Hmga2 protein loss alters nuclear envelope and 3D chromatin structure

    Get PDF
    The high-mobility group Hmga family of proteins are non-histone chromatin-interacting proteins which have been associated with a number of nuclear functions, including heterochromatin formation, replication, recombination, DNA repair, transcription, and formation of enhanceosomes. Due to its role based on dynamic interaction with chromatin, Hmga2 has a pathogenic role in diverse tumors and has been mainly studied in a cancer context; however, whether Hmga2 has similar physiological functions in normal cells remains less explored. Hmga2 was additionally shown to be required during the exit of embryonic stem cells (ESCs) from the ground state of pluripotency, to allow their transition into epiblast-like cells (EpiLCs), and here, we use that system to gain further understanding of normal Hmga2 function

    Seismological monitoring of the February 2007 effusive eruption of the Stromboli volcano

    Get PDF
    On February 27, 2007, the Stromboli volcano, which has usually been characterized by moderate explosive activity, started an effusive eruption with a small lava flow down the NW flank. The permanent broadband network installed on the island allowed the revealing of anomalies in the seismicity before the effusive eruption and for the phenomena to be followed over time, thus obtaining meaningful information about the eruption dynamics. During the effusive phase, a major explosion occurred on March 15, 2007. On that occasion, two strainmeters deployed on the volcano in the previous year recorded a strain increment before the blast. After this explosion, which further destabilized the upper part of the edifice, swarms of Long-Period (LP) and hybrid events were recorded. The characteristics and locations of these events suggest that they were associated with the fracturing processes that affected the summit area of the cone. During the effusive phase, changes in the Very Long Period (VLP) event location were recorded. This type of events accompanied the change in the eruptive style, providing information about the magmatic conduit involved in their seismogenetic processes. The effusive phase stopped on April 2, 2007, and the typical Strombolian activity restarted some months later

    Geophysical monitoring of Stromboli volcano: insight into recent volcanic activity

    Get PDF
    Stromboli is an open conduit strato-volcano of the Aeolian archipelago (Italy), characterized by typical Strom-bolian explosive activity, lasting for several centuries, and by the emission of huge amounts of gas. The normalactivity of Stromboli is characterized by some hundreds of moderate explosions per day. Major explosions, whichlaunch scoria up to hundreds of meters from the craters, lava flows and paroxysmal explosions, which producelarge ballistic blocks, sometimes take place. During the effusive eruption in 2002 - 2003, which caused a tsunamiwith waves of about 10 meters high along the coasts of the Island, the monitoring system was enhanced. In 2006INGV has added two Sacks-Evertson borehole volumetric dilatometers to the surveillance system, in order to mon-itor changes in the local strain field by measuring areal strain. Today we have a large amount of geophysical dataand observations that allow us to better understand how this volcano works. After a period of low explosive activitystarted in mid-2014, Stromboli has shown a more intense explosive activity in the last few months. During the re-cent phase of increased activity, the geophysical monitoring system detected four major explosions occurred on 26July, 23 October, 1 November and 1 December 2017, respectively. The current phase of reawakening of Strombolivolcano has led the Italian civil protection authorities to decree the "attention" alert level (yellow) on the Island.PublishedVienna, Austria1IT. Reti di monitoraggio e sorveglianz

    Campi Flegrei, Vesuvius and Ischia Seismicity in the Context of the Neapolitan Volcanic Area

    Get PDF
    Studying seismicity in a volcanic environment provides important information on the state of activity of volcanoes. The seismicity of the Neapolitan volcanoes, Campi Flegrei, Vesuvius, and Ischia, shows distinctive characteristics for each volcano, covering a wide range of patterns and types. In this study we relocated some significant volcano-tectonic earthquake swarms that occurred in Campi Flegrei and Vesuvius. Moreover, we compared the earthquake occurrence evolution, the magnitude and the seismic energy release of the three volcanoes. Also, we considered the results of seismic analysis in the light of geochemical and ground deformation data that contribute to defining the state of activity of volcanoes. In Campi Flegrei, which is experiencing a long term unrest, we identified a seismogenic structure at shallow depth in Pisciarelli zone that has been activated repeatedly. The increasing seismicity accompanies an escalation of the hydrothermal activity and a ground uplift phase. At Vesuvius a very shallow seismicity is recorded, which in recent years has shown an increase in terms of the number of events per year. Earthquakes are usually located right beneath the crater axis. They are concentrated in a volume affected by the hydrothermal system. Finally, Ischia generally shows a low level of seismicity, however, in Casamicciola area events with a moderate magnitude can occur and these are potentially capable of causing severe damage to the town and population, due to their small hypocentral depth (typically < 2.5 km). After the seismic crisis of August 21, 2017 (mainshock magnitude M = 4), the seismicity returned to a low level in terms of occurrence rate and magnitude of earthquakes. The seismicity of these three different volcanic areas shows some common aspects that highlight a relevant role of hydrothermal processes in the seismogenesis of volcanic areas. However, while the main swarms in Campi Flegrei and most of the Vesuvian earthquakes are distributed along conduit-like structures, the seismicity of Ischia is mainly located along faults. Furthermore, the temporal evolution of seismicity in Neapolitan volcanic area suggests a concomitant increase in the occurrence of earthquakes both in Campi Flegrei and Vesuvius in recent years

    Rendiconto di sorveglianza sismica anno 2004

    Get PDF
    Obiettivo principale di una rete sismica per il monitoraggio vulcanico è quello di rilevare una serie di segnali associabili a processi che si sviluppano all’interno del vulcano e che possono essere attribuiti a variazioni dello stato dinamico del sistema. I fenomeni rilevabili sono costituiti da eventi sismici, talvolta manifestati come sciami, ossia sequenze di terremoti concentrati nel tempo, formati anche da centinaia di eventi nell'arco di poche ore. Questi eventi, spesso di bassa energia, sono generati da processi fisici diversificati (meccanismi di sorgente) in grado di produrre segnali simili a quelli riscontrati in aree non vulcaniche (Vulcano Tettonici - VT), oppure segnali a bassa frequenza, detti Long Period (LP), e segnali con frequenze molto basse, con periodi anche di diverse decine di secondi, detti Very Long Period (VLP). Infine i processi interni alla struttura vulcanica sono in grado di generare anche un segnale continuo detto microtremore vulcanico. L’attività di sorveglianza vulcanica, attraverso il rilevamento, l'analisi e la corretta interpretazione di questi fenomeni, si pone l’obiettivo ultimo di segnalare l’evoluzione del vulcano verso una ripresa a breve-medio termine dell'attività eruttiva. Il Centro di Monitoraggio dell’Osservatorio Vesuviano (INGV) gestisce le reti per la sorveglianza sismica del Vesuvio, dei Campi Flegrei e di Ischia che sono, come è noto, vulcani ad alto rischio a causa del loro stile eruttivo, prevalentemente esplosivo, e della presenza nelle loro prossimità di vaste aree urbanizzate.INGV Sezione di Napoli "Osservatorio Vesuviano"Published1IT. Reti di monitoraggio e sorveglianz
    corecore