17 research outputs found

    The antimalarial efficacy and mechanism of resistance of the novel chemotype DDD01034957.

    Get PDF
    New antimalarial therapeutics are needed to ensure that malaria cases continue to be driven down, as both emerging parasite resistance to frontline chemotherapies and mosquito resistance to current insecticides threaten control programmes. Plasmodium, the apicomplexan parasite responsible for malaria, causes disease pathology through repeated cycles of invasion and replication within host erythrocytes (the asexual cycle). Antimalarial drugs primarily target this cycle, seeking to reduce parasite burden within the host as fast as possible and to supress recrudescence for as long as possible. Intense phenotypic drug screening efforts have identified a number of promising new antimalarial molecules. Particularly important is the identification of compounds with new modes of action within the parasite to combat existing drug resistance and suitable for formulation of efficacious combination therapies. Here we detail the antimalarial properties of DDD01034957-a novel antimalarial molecule which is fast-acting and potent against drug resistant strains in vitro, shows activity in vivo, and possesses a resistance mechanism linked to the membrane transporter PfABCI3. These data support further medicinal chemistry lead-optimization of DDD01034957 as a novel antimalarial chemical class and provide new insights to further reduce in vivo metabolic clearance

    Effect of the haematocrit layer geometry on Plasmodium falciparum static thin-layer in vitro cultures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>In vitro </it>cultivation of <it>Plasmodium falciparum </it>is usually carried out through the continuous preservation of infected erythrocytes deposited in static thin layers of settled haematocrit. This technique, called the candle-jar method, was first achieved by Trager and Jensen in 1976 and has undergone slight modifications since then. However, no systematic studies concerning the geometry of the haematocrit layer have been carried out. In this work, a thorough investigation of the effects of the geometric culturing conditions on the parasite's development is presented.</p> <p>Methods</p> <p>Several experimental trials exploring different settings have been carried out, covering haematocrit layer depths that ranged from 6 mm to 3 mm and separation between the walls of the culturing device that ranged from 7.5 mm to 9 mm. The obtained results have been analysed and compared to different system-level models and to an Individual-Based Model.</p> <p>Conclusion</p> <p>In line with the results, a mechanism governing the propagation of the infection which limits it to the vicinity of the interface between the haematocrit layer and the culture medium is deduced, and the most appropriate configurations are proposed for further experimental assays.</p

    A tetraoxane-based antimalarial drug candidate that overcomes PfK13-C580Y dependent artemisinin resistance.

    Get PDF
    K13 gene mutations are a primary marker of artemisinin resistance in Plasmodium falciparum malaria that threatens the long-term clinical utility of artemisinin-based combination therapies, the cornerstone of modern day malaria treatment. Here we describe a multinational drug discovery programme that has delivered a synthetic tetraoxane-based molecule, E209, which meets key requirements of the Medicines for Malaria Venture drug candidate profiles. E209 has potent nanomolar inhibitory activity against multiple strains of P. falciparum and P. vivax in vitro, is efficacious against P. falciparum in in vivo rodent models, produces parasite reduction ratios equivalent to dihydroartemisinin and has pharmacokinetic and pharmacodynamic characteristics compatible with a single-dose cure. In vitro studies with transgenic parasites expressing variant forms of K13 show no cross-resistance with the C580Y mutation, the primary variant observed in Southeast Asia. E209 is a superior next generation endoperoxide with combined pharmacokinetic and pharmacodynamic features that overcome the liabilities of artemisinin derivatives

    UCT943, a next generation Plasmodium falciparum PI4K inhibitor preclinical candidate for the treatment of malaria

    Get PDF
    The 2-aminopyridine MMV048 was the first drug candidate inhibiting; Plasmodium; phosphatidylinositol 4-kinase (PI4K), a novel drug target for malaria, to enter clinical development. In an effort to identify the next generation of PI4K inhibitors, the series was optimized to improve properties such as solubility and antiplasmodial potency across the parasite life cycle, leading to the 2-aminopyrazine UCT943. The compound displayed higher asexual blood stage, transmission-blocking, and liver stage activities than MMV048 and was more potent against resistant; Plasmodium falciparum; and; Plasmodium vivax; clinical isolates. Excellent; in vitro; antiplasmodial activity translated into high efficacy in; Plasmodium berghei; and humanized; P. falciparum; NOD-; scid IL-2R; Îł; null; mouse models. The high passive permeability and high aqueous solubility of UCT943, combined with low to moderate; in vivo; intrinsic clearance, resulted in sustained exposure and high bioavailability in preclinical species. In addition, the predicted human dose for a curative single administration using monkey and dog pharmacokinetics was low, ranging from 50 to 80 mg. As a next-generation; Plasmodium; PI4K inhibitor, UCT943, based on the combined preclinical data, has the potential to form part of a single-exposure radical cure and prophylaxis (SERCaP) to treat, prevent, and block the transmission of malaria

    Evaluation of N-(phenylmethyl)-4-[5-(phenylmethyl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridin-4-yl]benzamide inhibitors of Mycobacterium tuberculosis growth

    No full text
    The biological evaluation of imidazopiperidines as FAS II inhibitors of Mycobacterium tuberculosis growth has been carried out with a view to assessment of potential as lead compounds for the development of a new TB drug. A summary of the hit evaluation and current challenges is described herein
    corecore