683 research outputs found

    Visualizing simultaneity in diasporic public spheres: the case of the Mexican diaspora in the US

    Get PDF
    This article argues that explorations of interactive spaces afforded by digital news media provide a dynamic platform to visualize the prospects for the political participation of diasporas in their countries of origin and residence. In this case, a breakdown of the frequency of comments poured in response to a variety of news sections about Mexico and the US in Univision.com uncovered a lively range of interactions between news forum participants, signalling simultaneous interest in on-going events and processes in the two countries. The dual national orientations highlighted by these findings “touch base” with the body of literature about media and migration, which has in recent times recognised the interconnectedness of immigrants-sending and receiving societies, whilst offering a more refined conceptualization of the concept of simultaneity in regard to diasporic public spheres

    The shared benefit approach to competitiveness

    Get PDF
    The purpose of this article is to show a new approach to measure competitiveness in organizations by introducing a measurement of processes capabilities index concerning meeting needs and expectation of essential stakeholders. The argument initiates of considering a logical syllogism that relates identifying and fulfilling stakeholders needs and expectations with organization competitiveness, second compare two-way investments and benefits received among stakeholders and organizations and then proposes the use of process capability index to measure the competitiveness regarding stakeholder’s management. An example of any given company is used to explain a quantitative approach and the use of a calculated cpk index to measure organizations capabilities regarding shared interest. The proposition shows a proposed general model of equilibrium in the shared benefit that can explain a quantitative approach of the capacity of the organization to manage stakeholders

    Prevalence of blood parasites in two western-Mediterranean local populations of the yellow-legged Gull Larus cachinnans michahellis

    Get PDF
    This study is the contribution #3 to the LIFE-NATURE program BA 3200/98/447 >Conservation of island SPAs in the Valencian Region> financed by the Generalitat Valenciana and the E.U.Peer Reviewe

    Modelling adsorption isotherms of binary mixtures of carbon dioxide, methane and nitrogen

    Get PDF
    "A molecular-based approach for modelling mixtures adsorbed onto solid surfaces using the Statistical Associating Fluid Theory for Potentials of Variable Range (SAFT-VR) for three- and two-dimensional systems is presented in this work. The theory is used to describe the adsorption of binary mixtures of carbon dioxide, methane and nitrogen onto dry activated carbon, describing the overall adsorption phase diagram reported for these systems even at high pressures.

    La sexualización del desnudo femenino en el arte occidental

    Get PDF
    El desnudo femenino ha sido la temática más recurrente entre los artistas desde el inicio de las Bellas Artes. Sin embargo, en la mayoría de estas representaciones, el desnudo era despojado de toda naturalidad y en muchas ocasiones objetificado y sexualizado. Por este motivo. en el presente Trabajo de Fin de Grado, se pretende hacer un breve recorrido por las distintas épocas, con el fin de intentar comprender mejor la razón del sometimiento impuesto a la mujer y -por ende- las diferencias entre creador y creadora a la hora de tratar el desnudo femenino.Universidad de Sevilla. Grado en Bellas Arte

    Micronized bran enriched fresh egg tagliatelle: significance of gums addition on pasta technological features

    Full text link
    [EN] The aim of the work was to produce fibre-enriched fresh pasta based on micronised wheat bran and durum wheat semolina with appropriate techno-functional properties. Wheat semolina was replaced with fine particle size (50% below 75 mu m) wheat bran - up to 11.54% (w/w). A Box-Behnken design with randomised response surface methodology was used to determine a suitable combination of carboxymethylcellulose, xanthan gum and locust bean gum to improve pasta attributes: minimum cooking loss, maximum values for water gain and swelling index, as well as better colour and texture characteristics before and after cooking. The proximate chemical composition of wheat semolina and bran was determined and the microstructure of uncooked pasta was observed as well. From the response surface methodology analysis, it is recommended to use: (i) xanthan gum over 0.6% w/w as it led to bran-enriched pasta with a better developed structure and superior cooking behaviour, (ii) a combination of xanthan gum (0.8% w/w) and carboxymethylcellulose (over 0.6% w/w) to enhance uncooked pasta yellowness.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Authors would like to thank the Conselleria de Empresa, Universidad y Ciencia, Generalitat Valenciana (Spain) for financial support throughout the project AICO/2016/056.Martín-Esparza, M.; Raga-Soriano, A.; González Martínez, MC.; Albors, A. (2018). Micronized bran enriched fresh egg tagliatelle: significance of gums addition on pasta technological features. Food Science and Technology International. 24(4):309-320. https://doi.org/10.1177/1082013217750683S30932024

    Quality stability assessment of a strawberry-gel product during storage

    Full text link
    A strawberry-gel product was formulated by using osmotic treatment. The osmotic solution (OS) used to dehydrate the fruit was mixed with carrageenan and employed to formulate the gel. In order to prevent a further dehydration of the fruit during product storage, the OS was previously diluted so that its water activity is the same as the dehydrated fruit. Changes in water, soluble solids, citric acid, ascorbic acid and anthocyanin contents, water activity, surface color, mechanical properties and volatile profile during 15 days of storage (5C) were evaluated. The use of the OS increased the nutritive and functional properties of the product. Changes in volatile profile, mechanical properties and color of the strawberry occur mainly in the first 2 days of storage and are not due to the presence of the gel matrix, as they occur also in the samples not placed in gel. The flux of anthocyanins from the fruit to the gel produces redness, giving a more attractive aspect to the formulated product. © 2009 Wiley Periodicals, Inc.The authors thank the Ministerio de Educacion y Ciencia and the Fondo Europeo de Desarrollo Regional (FEDER) for financial support throughout the projects AGL2002-01793 and AGL 2005-05994.Martín-Esparza, M.; Escriche Roberto, MI.; Penagos, L.; Martínez Navarrete, N. (2011). Quality stability assessment of a strawberry-gel product during storage. Journal of Food Process Engineering. 34(2):204-223. https://doi.org/10.1111/j.1745-4530.2008.00349.xS20422334

    Antifungal Polyvinyl Alcohol Coatings Incorporating Carvacrol for the Postharvest Preservation of Golden Delicious Apple

    Full text link
    [EN] Different polyvinyl alcohol (PVA) coating formulations incorporating starch (S) and carvacrol (C) as the active agent were applied to Golden Delicious apples to evaluate their effectiveness at controlling weight loss, respiration rate, fruit firmness, and fungal decay against B. cinerea and P. expansum throughout storage time. Moreover, the impact of these coatings on the sensory attributes of the fruit was also analyzed. The application of the coatings did not notably affect the weight loss, firmness changes, or respiration pathway of apples, probably due to the low solid surface density of the coatings. Nevertheless, they exhibited a highly efficient disease control against both black and green mold growths, as a function of the carvacrol content and distribution in the films. The sensory analysis revealed the great persistence of the carvacrol aroma and flavor in the coated samples, which negatively impact the acceptability of the coated products.This research was funded by the Agencia Estatal de Investigacion (Spain) through the projects RTA2015-00037-C02-00 and PID2019-105207RB-I00.Sapper, M.; Martín-Esparza, M.; Chiralt Boix, MA.; González Martínez, MC. (2020). Antifungal Polyvinyl Alcohol Coatings Incorporating Carvacrol for the Postharvest Preservation of Golden Delicious Apple. Coatings. 10(11):1-14. https://doi.org/10.3390/coatings10111027S1141011Gong, D., Bi, Y., Jiang, H., Xue, S., Wang, Z., Li, Y., … Prusky, D. (2019). A comparison of postharvest physiology, quality and volatile compounds of ‘Fuji’ and ‘Delicious’ apples inoculated with Penicillium expansum. Postharvest Biology and Technology, 150, 95-104. doi:10.1016/j.postharvbio.2018.12.018Ma, L., He, J., Liu, H., & Zhou, H. (2017). The phenylpropanoid pathway affects apple fruit resistance to Botrytis cinerea. Journal of Phytopathology, 166(3), 206-215. doi:10.1111/jph.12677Nikkhah, M., Hashemi, M., Habibi Najafi, M. B., & Farhoosh, R. (2017). Synergistic effects of some essential oils against fungal spoilage on pear fruit. International Journal of Food Microbiology, 257, 285-294. doi:10.1016/j.ijfoodmicro.2017.06.021Batta, Y. A. (2004). Postharvest biological control of apple gray mold by Trichoderma harzianum Rifai formulated in an invert emulsion. Crop Protection, 23(1), 19-26. doi:10.1016/s0261-2194(03)00163-7Da Rocha Neto, A. C., Navarro, B. B., Canton, L., Maraschin, M., & Di Piero, R. M. (2019). Antifungal activity of palmarosa (Cymbopogon martinii), tea tree (Melaleuca alternifolia) and star anise (Illicium verum) essential oils against Penicillium expansum and their mechanisms of action. LWT, 105, 385-392. doi:10.1016/j.lwt.2019.02.060Dhall, R. K. (2013). Advances in Edible Coatings for Fresh Fruits and Vegetables: A Review. Critical Reviews in Food Science and Nutrition, 53(5), 435-450. doi:10.1080/10408398.2010.541568Lin, D., & Zhao, Y. (2007). Innovations in the Development and Application of Edible Coatings for Fresh and Minimally Processed Fruits and Vegetables. Comprehensive Reviews in Food Science and Food Safety, 6(3), 60-75. doi:10.1111/j.1541-4337.2007.00018.xSánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., & Cháfer, M. (2011). Use of Essential Oils in Bioactive Edible Coatings: A Review. Food Engineering Reviews, 3(1), 1-16. doi:10.1007/s12393-010-9031-3Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223-253. doi:10.1016/j.ijfoodmicro.2004.03.022Combrinck, S., Regnier, T., & Kamatou, G. P. P. (2011). In vitro activity of eighteen essential oils and some major components against common postharvest fungal pathogens of fruit. Industrial Crops and Products, 33(2), 344-349. doi:10.1016/j.indcrop.2010.11.011Prakash, B., Kedia, A., Mishra, P. K., & Dubey, N. K. (2015). Plant essential oils as food preservatives to control moulds, mycotoxin contamination and oxidative deterioration of agri-food commodities – Potentials and challenges. Food Control, 47, 381-391. doi:10.1016/j.foodcont.2014.07.023Sivakumar, D., & Bautista-Baños, S. (2014). A review on the use of essential oils for postharvest decay control and maintenance of fruit quality during storage. Crop Protection, 64, 27-37. doi:10.1016/j.cropro.2014.05.012Abbaszadeh, S., Sharifzadeh, A., Shokri, H., Khosravi, A. R., & Abbaszadeh, A. (2014). Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi. Journal de Mycologie Médicale, 24(2), e51-e56. doi:10.1016/j.mycmed.2014.01.063Camele, I., Altieri, L., De Martino, L., De Feo, V., Mancini, E., & Rana, G. L. (2012). In Vitro Control of Post-Harvest Fruit Rot Fungi by Some Plant Essential Oil Components. International Journal of Molecular Sciences, 13(2), 2290-2300. doi:10.3390/ijms13022290De Souza, E. L., Sales, C. V., de Oliveira, C. E. V., Lopes, L. A. A., da Conceição, M. L., Berger, L. R. R., & Stamford, T. C. M. (2015). Efficacy of a coating composed of chitosan from Mucor circinelloides and carvacrol to control Aspergillus flavus and the quality of cherry tomato fruits. Frontiers in Microbiology, 6. doi:10.3389/fmicb.2015.00732Saad, I. K., Hassan, B., Soumya, E., Moulay, S., & Mounyr, B. (2016). Antifungal Activity and Physico-chemical Surface Properties of the Momentaneously Exposed Penicillium expansum Spores to Carvacrol. Research Journal of Microbiology, 11(6), 178-185. doi:10.3923/jm.2016.178.185Neri, F., Mari, M., & Brigati, S. (2006). Control of Penicillium expansum by plant volatile compounds. Plant Pathology, 55(1), 100-105. doi:10.1111/j.1365-3059.2005.01312.xZabka, M., & Pavela, R. (2013). Antifungal efficacy of some natural phenolic compounds against significant pathogenic and toxinogenic filamentous fungi. Chemosphere, 93(6), 1051-1056. doi:10.1016/j.chemosphere.2013.05.076Sapper, M., & Chiralt, A. (2018). Starch-Based Coatings for Preservation of Fruits and Vegetables. Coatings, 8(5), 152. doi:10.3390/coatings8050152Cano, A. I., Cháfer, M., Chiralt, A., & González-Martínez, C. (2015). Physical and microstructural properties of biodegradable films based on pea starch and PVA. Journal of Food Engineering, 167, 59-64. doi:10.1016/j.jfoodeng.2015.06.003Jayakumar, A., K.V., H., T.S., S., Joseph, M., Mathew, S., G., P., … E.K., R. (2019). Starch-PVA composite films with zinc-oxide nanoparticles and phytochemicals as intelligent pH sensing wraps for food packaging application. International Journal of Biological Macromolecules, 136, 395-403. doi:10.1016/j.ijbiomac.2019.06.018Priya, B., Gupta, V. K., Pathania, D., & Singha, A. S. (2014). Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre. Carbohydrate Polymers, 109, 171-179. doi:10.1016/j.carbpol.2014.03.044Russo, M. A. L., O’Sullivan, C., Rounsefell, B., Halley, P. J., Truss, R., & Clarke, W. P. (2009). The anaerobic degradability of thermoplastic starch: Polyvinyl alcohol blends: Potential biodegradable food packaging materials. Bioresource Technology, 100(5), 1705-1710. doi:10.1016/j.biortech.2008.09.026He, L., Lan, W., Ahmed, S., Qin, W., & Liu, Y. (2019). Electrospun polyvinyl alcohol film containing pomegranate peel extract and sodium dehydroacetate for use as food packaging. Food Packaging and Shelf Life, 22, 100390. doi:10.1016/j.fpsl.2019.100390Tampau, A., González-Martinez, C., & Chiralt, A. (2017). Carvacrol encapsulation in starch or PCL based matrices by electrospinning. Journal of Food Engineering, 214, 245-256. doi:10.1016/j.jfoodeng.2017.07.005Marín, A., Atarés, L., Cháfer, M., & Chiralt, A. (2017). Properties of biopolymer dispersions and films used as carriers of the biocontrol agent Candida sake CPA-1. LWT - Food Science and Technology, 79, 60-69. doi:10.1016/j.lwt.2017.01.024Castelló, M. L., Fito, P. J., & Chiralt, A. (2010). Changes in respiration rate and physical properties of strawberries due to osmotic dehydration and storage. Journal of Food Engineering, 97(1), 64-71. doi:10.1016/j.jfoodeng.2009.09.016Saei, A., Tustin, D. S., Zamani, Z., Talaie, A., & Hall, A. J. (2011). Cropping effects on the loss of apple fruit firmness during storage: The relationship between texture retention and fruit dry matter concentration. Scientia Horticulturae, 130(1), 256-265. doi:10.1016/j.scienta.2011.07.008Baert, K., Devlieghere, F., Bo, L., Debevere, J., & De Meulenaer, B. (2008). The effect of inoculum size on the growth of Penicillium expansum in apples. Food Microbiology, 25(1), 212-217. doi:10.1016/j.fm.2007.06.002Daniel, C. K., Lennox, C. L., & Vries, F. A. (2015). In vivo application of garlic extracts in combination with clove oil to prevent postharvest decay caused by Botrytis cinerea, Penicillium expansum and Neofabraea alba on apples. Postharvest Biology and Technology, 99, 88-92. doi:10.1016/j.postharvbio.2014.08.006Expert Committe on Food Additives Fitthy-Fifth Reporthttp://apps.who.int/iris/bitstream/10665/42388/1/WHO_TRS:901.pdfSánchez-González, L., Cháfer, M., Chiralt, A., & González-Martínez, C. (2010). Physical properties of edible chitosan films containing bergamot essential oil and their inhibitory action on Penicillium italicum. Carbohydrate Polymers, 82(2), 277-283. doi:10.1016/j.carbpol.2010.04.047Perdones, Á., Escriche, I., Chiralt, A., & Vargas, M. (2016). Effect of chitosan–lemon essential oil coatings on volatile profile of strawberries during storage. Food Chemistry, 197, 979-986. doi:10.1016/j.foodchem.2015.11.054Talón, E., Vargas, M., Chiralt, A., & González-Martínez, C. (2019). Antioxidant starch-based films with encapsulated eugenol. Application to sunflower oil preservation. LWT, 113, 108290. doi:10.1016/j.lwt.2019.108290Andrade, J., González-Martínez, C., & Chiralt, A. (2020). The Incorporation of Carvacrol into Poly (vinyl alcohol) Films Encapsulated in Lecithin Liposomes. Polymers, 12(2), 497. doi:10.3390/polym12020497Wiśniewska, M., Bogatyrov, V., Ostolska, I., Szewczuk-Karpisz, K., Terpiłowski, K., & Nosal-Wiercińska, A. (2015). Impact of poly(vinyl alcohol) adsorption on the surface characteristics of mixed oxide Mn x O y –SiO2. Adsorption, 22(4-6), 417-423. doi:10.1007/s10450-015-9696-2Sapper, M., Palou, L., Pérez-Gago, M. B., & Chiralt, A. (2019). Antifungal Starch–Gellan Edible Coatings with Thyme Essential Oil for the Postharvest Preservation of Apple and Persimmon. Coatings, 9(5), 333. doi:10.3390/coatings9050333Conforti, F. D., & Totty, J. A. (2007). Effect of three lipid/hydrocolloid coatings on shelf life stability of Golden Delicious apples. International Journal of Food Science & Technology, 42(9), 1101-1106. doi:10.1111/j.1365-2621.2006.01365.xMiller, K. S., & Krochta, J. M. (1997). Oxygen and aroma barrier properties of edible films: A review. Trends in Food Science & Technology, 8(7), 228-237. doi:10.1016/s0924-2244(97)01051-0Banks, N. H., Dadzie, B. K., & Cleland, D. J. (1993). Reducing gas exchange of fruits with surface coatings. Postharvest Biology and Technology, 3(3), 269-284. doi:10.1016/0925-5214(93)90062-8Kader, A. A., Zagory, D., Kerbel, E. L., & Wang, C. Y. (1989). Modified atmosphere packaging of fruits and vegetables. Critical Reviews in Food Science and Nutrition, 28(1), 1-30. doi:10.1080/10408398909527490Campos-Requena, V. H., Rivas, B. L., Pérez, M. A., Figueroa, C. R., Figueroa, N. E., & Sanfuentes, E. A. (2017). Thermoplastic starch/clay nanocomposites loaded with essential oil constituents as packaging for strawberries − In vivo antimicrobial synergy over Botrytis cinerea. Postharvest Biology and Technology, 129, 29-36. doi:10.1016/j.postharvbio.2017.03.005Grande-Tovar, C. D., Chaves-Lopez, C., Serio, A., Rossi, C., & Paparella, A. (2018). Chitosan coatings enriched with essential oils: Effects on fungi involved in fruit decay and mechanisms of action. Trends in Food Science & Technology, 78, 61-71. doi:10.1016/j.tifs.2018.05.019Perdones, A., Sánchez-González, L., Chiralt, A., & Vargas, M. (2012). Effect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biology and Technology, 70, 32-41. doi:10.1016/j.postharvbio.2012.04.002Qian, D., Du, G., & Chen, J. (2004). Isolation and Culture Characterization of a New Polyvinyl Alcohol-Degrading Strain: Penicillium sp. WSH02-21. World Journal of Microbiology and Biotechnology, 20(6), 587-591. doi:10.1023/b:wibi.0000043172.83610.08Kawai, F., & Hu, X. (2009). Biochemistry of microbial polyvinyl alcohol degradation. Applied Microbiology and Biotechnology, 84(2). doi:10.1007/s00253-009-2113-6Banani, H., Olivieri, L., Santoro, K., Garibaldi, A., Gullino, M., & Spadaro, D. (2018). Thyme and Savory Essential Oil Efficacy and Induction of Resistance against Botrytis cinerea through Priming of Defense Responses in Apple. Foods, 7(2), 11. doi:10.3390/foods7020011Cano Embuena, A. I., Cháfer Nácher, M., Chiralt Boix, A., Molina Pons, M. P., Borrás Llopis, M., Beltran Martínez, M. C., & González Martínez, C. (2016). Quality of goat′s milk cheese as affected by coating with edible chitosan‐essential oil films. International Journal of Dairy Technology, 70(1), 68-76. doi:10.1111/1471-0307.1230
    corecore