1,370 research outputs found

    Algorithmic Verification of Asynchronous Programs

    Full text link
    Asynchronous programming is a ubiquitous systems programming idiom to manage concurrent interactions with the environment. In this style, instead of waiting for time-consuming operations to complete, the programmer makes a non-blocking call to the operation and posts a callback task to a task buffer that is executed later when the time-consuming operation completes. A co-operative scheduler mediates the interaction by picking and executing callback tasks from the task buffer to completion (and these callbacks can post further callbacks to be executed later). Writing correct asynchronous programs is hard because the use of callbacks, while efficient, obscures program control flow. We provide a formal model underlying asynchronous programs and study verification problems for this model. We show that the safety verification problem for finite-data asynchronous programs is expspace-complete. We show that liveness verification for finite-data asynchronous programs is decidable and polynomial-time equivalent to Petri Net reachability. Decidability is not obvious, since even if the data is finite-state, asynchronous programs constitute infinite-state transition systems: both the program stack and the task buffer of pending asynchronous calls can be potentially unbounded. Our main technical construction is a polynomial-time semantics-preserving reduction from asynchronous programs to Petri Nets and conversely. The reduction allows the use of algorithmic techniques on Petri Nets to the verification of asynchronous programs. We also study several extensions to the basic models of asynchronous programs that are inspired by additional capabilities provided by implementations of asynchronous libraries, and classify the decidability and undecidability of verification questions on these extensions.Comment: 46 pages, 9 figure

    Black-Box Testing Liveness Properties of Partially Observable Stochastic Systems

    Get PDF
    We study black-box testing for stochastic systems and arbitrary ?-regular specifications, explicitly including liveness properties. We are given a finite-state probabilistic system that we can only execute from the initial state. We have no information on the number of reachable states, or on the probabilities; further, we can only partially observe the states. The only action we can take is to restart the system. We design restart strategies guaranteeing that, if the specification is violated with non-zero probability, then w.p.1 the number of restarts is finite, and the infinite run executed after the last restart violates the specification. This improves on previous work that required full observability. We obtain asymptotically optimal upper bounds on the expected number of steps until the last restart. We conduct experiments on a number of benchmarks, and show that our strategies allow one to find violations in Markov chains much larger than the ones considered in previous work

    Weighted Dynamic Pushdown Networks

    Get PDF
    We develop a generic framework for the analysis of programs with recursive procedures and dynamic process creation. To this end we combine the approach of weighted pushdown systems (WPDS) with the model of dynamic pushdown networks (DPN). Weighted dynamic pushdown networks (WDPN) describe processes running in parallel. Each process may perform pushdown actions and spawn new processes. Transitions are labelled by weights to carry additional information. We derive a method to determine meet-over-all-paths values for the paths from a starting configuration to a regular set of configurations of a WDPN

    Reachability for dynamic parametric processes

    Full text link
    In a dynamic parametric process every subprocess may spawn arbitrarily many, identical child processes, that may communicate either over global variables, or over local variables that are shared with their parent. We show that reachability for dynamic parametric processes is decidable under mild assumptions. These assumptions are e.g. met if individual processes are realized by pushdown systems, or even higher-order pushdown systems. We also provide algorithms for subclasses of pushdown dynamic parametric processes, with complexity ranging between NP and DEXPTIME.Comment: 31 page

    Streaming Tree Transducers

    Get PDF
    Theory of tree transducers provides a foundation for understanding expressiveness and complexity of analysis problems for specification languages for transforming hierarchically structured data such as XML documents. We introduce streaming tree transducers as an analyzable, executable, and expressive model for transforming unranked ordered trees in a single pass. Given a linear encoding of the input tree, the transducer makes a single left-to-right pass through the input, and computes the output in linear time using a finite-state control, a visibly pushdown stack, and a finite number of variables that store output chunks that can be combined using the operations of string-concatenation and tree-insertion. We prove that the expressiveness of the model coincides with transductions definable using monadic second-order logic (MSO). Existing models of tree transducers either cannot implement all MSO-definable transformations, or require regular look ahead that prohibits single-pass implementation. We show a variety of analysis problems such as type-checking and checking functional equivalence are solvable for our model.Comment: 40 page

    Approaching the Coverability Problem Continuously

    Get PDF
    The coverability problem for Petri nets plays a central role in the verification of concurrent shared-memory programs. However, its high EXPSPACE-complete complexity poses a challenge when encountered in real-world instances. In this paper, we develop a new approach to this problem which is primarily based on applying forward coverability in continuous Petri nets as a pruning criterion inside a backward coverability framework. A cornerstone of our approach is the efficient encoding of a recently developed polynomial-time algorithm for reachability in continuous Petri nets into SMT. We demonstrate the effectiveness of our approach on standard benchmarks from the literature, which shows that our approach decides significantly more instances than any existing tool and is in addition often much faster, in particular on large instances.Comment: 18 pages, 4 figure

    Finite Automata for the Sub- and Superword Closure of CFLs: Descriptional and Computational Complexity

    Full text link
    We answer two open questions by (Gruber, Holzer, Kutrib, 2009) on the state-complexity of representing sub- or superword closures of context-free grammars (CFGs): (1) We prove a (tight) upper bound of 2O(n)2^{\mathcal{O}(n)} on the size of nondeterministic finite automata (NFAs) representing the subword closure of a CFG of size nn. (2) We present a family of CFGs for which the minimal deterministic finite automata representing their subword closure matches the upper-bound of 22O(n)2^{2^{\mathcal{O}(n)}} following from (1). Furthermore, we prove that the inequivalence problem for NFAs representing sub- or superword-closed languages is only NP-complete as opposed to PSPACE-complete for general NFAs. Finally, we extend our results into an approximation method to attack inequivalence problems for CFGs
    • ā€¦
    corecore