404 research outputs found
Evolution of the microstructure of cobalt during diffusionless transformation cycles
Differential scanning calorimetry and transmission electron microscopy have been used to study thermal fatigue due to diffusionless phase transformation cycling in pure cobalt. Thermal cycling through the allotropic (hcp β fcc) transformation results in a temperature shift of the calorimetric peaks, which means a delay of the transformation. In addition, the transformation enthalpy, which is greater on heating than on cooling, diminishes when the number of transformation cycles increases. This is interpreted as being due to an evolution of the microstructure. Transmission electron microscopy shows the appearance of transformation-induced defects, which are mainly sessile dislocations. We can interpret the calorimetry results (enthalpy evolution and transformation delay) as due to the interactions between interface dislocations and these sessile dislocation
Methylated DNA recognition during the reversal of epigenetic silencing is regulated by cysteine and cerine residues in the Epstein-Barr Virus lytic switch protein
Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with various malignancies, including Burkitt's lymphoma and nasopharyngeal carcinoma. Like all herpesviruses, the EBV life cycle alternates between latency and lytic replication. During latency, the viral genome is largely silenced by host-driven methylation of CpG motifs and, in the switch to the lytic cycle, this epigenetic silencing is overturned. A key event is the activation of the viral BRLF1 gene by the immediate-early protein Zta. Zta is a bZIP transcription factor that preferentially binds to specific response elements (ZREs) in the BRLF1 promoter (Rp) when these elements are methylated. Zta's ability to trigger lytic cycle activation is severely compromised when a cysteine residue in its bZIP domain is mutated to serine (C189S), but the molecular basis for this effect is unknown. Here we show that the C189S mutant is defective for activating Rp in a Burkitt's lymphoma cell line. The mutant is compromised both in vitro and in vivo for binding two methylated ZREs in Rp (ZRE2 and ZRE3), although the effect is striking only for ZRE3. Molecular modeling of Zta bound to methylated ZRE3, together with biochemical data, indicate that C189 directly contacts one of the two methyl cytosines within a specific CpG motif. The motif's second methyl cytosine (on the complementary DNA strand) is predicted to contact S186, a residue known to regulate methyl-ZRE recognition. Our results suggest that C189 regulates the enhanced interaction of Zta with methylated DNA in overturning the epigenetic control of viral latency. As C189 is conserved in many bZIP proteins, the selectivity of Zta for methylated DNA may be a paradigm for a more general phenomenon
Substrate Binding Mode and Its Implication on Drug Design for Botulinum Neurotoxin A
The seven antigenically distinct serotypes of Clostridium botulinum neurotoxins, the causative agents of botulism, block the neurotransmitter release by specifically cleaving one of the three SNARE proteins and induce flaccid paralysis. The Centers for Disease Control and Prevention (CDC) has declared them as Category A biowarfare agents. The most potent among them, botulinum neurotoxin type A (BoNT/A), cleaves its substrate synaptosome-associated protein of 25 kDa (SNAP-25). An efficient drug for botulism can be developed only with the knowledge of interactions between the substrate and enzyme at the active site. Here, we report the crystal structures of the catalytic domain of BoNT/A with its uncleavable SNAP-25 peptide 197QRATKM202 and its variant 197RRATKM202 to 1.5 Γ
and 1.6 Γ
, respectively. This is the first time the structure of an uncleavable substrate bound to an active botulinum neurotoxin is reported and it has helped in unequivocally defining S1 to S5β² sites. These substrate peptides make interactions with the enzyme predominantly by the residues from 160, 200, 250 and 370 loops. Most notably, the amino nitrogen and carbonyl oxygen of P1 residue (Gln197) chelate the zinc ion and replace the nucleophilic water. The P1β²-Arg198, occupies the S1β² site formed by Arg363, Thr220, Asp370, Thr215, Ile161, Phe163 and Phe194. The S2β² subsite is formed by Arg363, Asn368 and Asp370, while S3β² subsite is formed by Tyr251, Leu256, Val258, Tyr366, Phe369 and Asn388. P4β²-Lys201 makes hydrogen bond with Gln162. P5β²-Met202 binds in the hydrophobic pocket formed by the residues from the 250 and 200 loop. Knowledge of interactions between the enzyme and substrate peptide from these complex structures should form the basis for design of potent inhibitors for this neurotoxin
Biochemical and structural studies of a L-haloacid dehalogenase from the thermophilic archaeon Sulfolobus tokodaii
addresses: Henry Wellcome Building for Biocatalysis, School of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.types: Journal Article; Research Support, Non-U.S. Gov'tThis a post-print, author-produced version of an article accepted for publication in Extremophiles. Copyright Β© 2009 Springer Verlag. The definitive version is available at http://link.springer.com/article/10.1007%2Fs00792-008-0208-0Haloacid dehalogenases have potential applications in the pharmaceutical and fine chemical industry as well as in the remediation of contaminated land. The L: -2-haloacid dehalogenase from the thermophilic archaeon Sulfolobus tokodaii has been cloned and over-expressed in Escherichia coli and successfully purified to homogeneity. Here we report the structure of the recombinant dehalogenase solved by molecular replacement in two different crystal forms. The enzyme is a homodimer with each monomer being composed of a core-domain of a beta-sheet bundle surrounded by alpha-helices and an alpha-helical sub-domain. This fold is similar to previously solved mesophilic L: -haloacid dehalogenase structures. The monoclinic crystal form contains a putative inhibitor L: -lactate in the active site. The enzyme displays haloacid dehalogenase activity towards carboxylic acids with the halide attached at the C2 position with the highest activity towards chloropropionic acid. The enzyme is thermostable with maximum activity at 60 degrees C and a half-life of over 1 h at 70 degrees C. The enzyme is relatively stable to solvents with 25% activity lost when incubated for 1 h in 20% v/v DMSO
Water vapour in the atmosphere of a transiting extrasolar planet
Water is predicted to be among, if not the most abundant molecular species
after hydrogen in the atmospheres of close-in extrasolar giant planets
(hot-Jupiters) Several attempts have been made to detect water on an exoplanet,
but have failed to find compelling evidence for it or led to claims that should
be taken with caution. Here we report an analysis of recent observations of the
hot-Jupiter HD189733b taken during the transit, where the planet passed in
front of its parent star. We find that absorption by water vapour is the most
likely cause of the wavelength-dependent variations in the effective radius of
the planet at the infrared wavelengths 3.6, 5.8 and 8 microns. The larger
effective radius observed at visible wavelengths may be due to either star
variability or the presence of clouds/hazes. We explain the most recent thermal
infrared observations of the planet during secondary transit behind the star,
reporting a non-detection of water on HD189733b, as being a consequence of the
nearly isothermal vertical profile of the planet.s atmosphere. Our results show
that water is detectable on extrasolar planets using the primary transit
technique and that the infrared should be a better wavelength region than the
visible, for such searches
- β¦