9 research outputs found

    Neuronal differentiation of rat hair follicle stem cells: The involvement of the neuroprotective factor seladin-1 (DHCR24)

    Get PDF
    Background: The seladin-1 (selective Alzheimer disease indicator-1), also known as DHCR24, is a gene found to be down-regulated in brain region affected by Alzheimer disease (AD). Whereas, hair follicle stem cells (HFSC), which are affected in with neurogenic potential, it might to hypothesize that this multipotent cell compartment is the predominant source of seladin-1. Our aim was to evaluate seladin-1 gene expression in hair follicle stem cells. Methods: In this study, bulge area of male Wistar rat HFSC were cultured and then characterized with Seladin-1 immunocytochemistry and flow cytometry on days 8 to 14. Next, 9-11-day cells were evaluated for seladin-1 gene expression by real-time PCR. Results: Our results indicated that expression of the seladin-1 gene (DHCR24) on days 9, 10, and 11 may contribute to the development of HFSC. However, the expression of this gene on day 11 was more than day 10 and on 10th day was more than day 9. Also, we assessed HFSC on day 14 and demonstrated these cells were positive for β-III tubulin, and seladin-1 was not expressed in this day. Conclusion: HFSC express seladin-1 and this result demonstrates that these cells might be used to cell therapy for AD in future

    Neuropathological changes in brain cortex and hippocampus in a rat model of Alzheimer's disease

    Get PDF
    Background: Alzheimer's disease (AD) is a neurodegenerative disorder with progressive loss of cognitive abilities and memory loss. The aim of this study was to compare neuropathological changes in hippocampus and brain cortex in a rat model of AD. Methods: Adult male Albino Wistar rats (weighing 250-300 g) were used for behavioral and histopathological studies. The rats were randomly assigned to three groups: control, sham and β-amyloid (Aβ) injection. For behavioral analysis, Y-maze and shuttle box were used, respectively at 14 and 16 days post-lesion. For histological studies, Nissl, modified Bielschowsky and modified Congo red staining were performed. The lesion was induced by injection of 4 μL of Aβ (1-40) into the hippocampal fissure. Results: In the present study, Aβ (1-40) injection into hippocampus could decrease the behavioral indexes and the number of CA1 neurons in hippocampus. Aβ injection CA1 caused Aβ deposition in the hippocampus and less than in cortex. We observed the loss of neurons in the hippocampus and cerebral cortex and certain subcortical regions. Y-maze test and single-trial passive avoidance test showed reduced memory retention in AD group. Conclusion: We found a significant decreased acquisition of passive avoidance and alternation behavior responses in AD group compared to control and sham group (P<0.0001). Compacted amyloid cores were present in the cerebral cortex, hippocampus and white matter, whereas, scattered amyloid cores were seen in cortex and hippocampus of AD group. Also, reduced neuronal density was indicated in AD group

    Ultrasonic irradiation to modify the functionalized bionanocomposite in sulfonated polybenzimidazole membrane for fuel cells applications and antibacterial activity

    No full text
    In this article the new proton exchange membranes were prepared from sulfonated polybenzimidazole (s-PBI) and various amounts of sulfonated titania/cellulose nanohybrids (titania/cellulose-SO3H) via ultrasonic waves. The ultrasonic irradiation effectively changes the rheology and the glass transition temperature and the crystallinity of the composite polymer. Ultrasonic irradiation has a very strong mixing and dispersion effect, much stronger than conventional stirring, which can improve the dispersion of titania/cellulose-SO3H nanoparticles in the polymer matrix. The strong –SO3H/–SO3H interaction between s-PBI chains and titania/cellulose-SO3H hybrids leads to ionic cross-linking in the membrane structure, which increases both the thermal stability and methanol resistance of the membranes. After acid doping with phosphoric acid, s-PBI/titania/cellulose-SO3H nanocomposite membranes exhibit depressions on methanol permeability and enhancements on proton conductivity comparing to the pristine s-PBI membrane. The chemical structure of the functionlized titania was characterized with FTIR, and energy-dispersive X-ray. Imidazole and sulfonated groups on the surface of modified nanoparticles forming linkages with s-PBI chains, improved the compatibility between s-PBI and nanoparticles, and enhanced the mechanical strength of the prepared nanocomposite membranes. From SEM and TEM analysis could explain the homogeneous dispersion of titania/cellulose-SO3H in nanocomposite membranes. Moreover, the membranes exhibited excellent antibacterial activities against S. aureus and E. col
    corecore