538 research outputs found

    Inverse problems for Schrodinger equations with Yang-Mills potentials in domains with obstacles and the Aharonov-Bohm effect

    Full text link
    We study the inverse boundary value problems for the Schr\"{o}dinger equations with Yang-Mills potentials in a bounded domain Ω0⊂Rn\Omega_0\subset\R^n containing finite number of smooth obstacles Ωj,1≤j≤r\Omega_j,1\leq j \leq r. We prove that the Dirichlet-to-Neumann operator on ∂Ω0\partial\Omega_0 determines the gauge equivalence class of the Yang-Mills potentials. We also prove that the metric tensor can be recovered up to a diffeomorphism that is identity on ∂Ω0\partial\Omega_0.Comment: 15 page

    A new approach to hyperbolic inverse problems II (Global step)

    Full text link
    We study the inverse problem for the second order self-adjoint hyperbolic equation with the boundary data given on a part of the boundary. This paper is the continuation of the author's paper [E]. In [E] we presented the crucial local step of the proof. In this paper we prove the global step. Our method is a modification of the BC-method with some new ideas. In particular, the way of the determination of the metric is new.Comment: 21 pages, 2 figure

    A new approach to hyperbolic inverse problems

    Full text link
    We present a modification of the BC-method in the inverse hyperbolic problems. The main novelty is the study of the restrictions of the solutions to the characteristic surfaces instead of the fixed time hyperplanes. The main result is that the time-dependent Dirichlet-to-Neumann operator prescribed on a part of the boundary uniquely determines the coefficients of the self-adjoint hyperbolic operator up to a diffeomorphism and a gauge transformation. In this paper we prove the crucial local step. The global step of the proof will be presented in the forthcoming paper.Comment: We corrected the proof of the main Lemma 2.1 by assuming that potentials A(x),V(x) are real value

    Optical Aharonov-Bohm effect: an inverse hyperbolic problems approach

    Full text link
    We describe the general setting for the optical Aharonov-Bohm effect based on the inverse problem of the identification of the coefficients of the governing hyperbolic equation by the boundary measurements. We interpret the inverse problem result as a possibility in principle to detect the optical Aharonov-Bohm effect by the boundary measurements.Comment: 34 pages. Minor changes, references adde

    The correction of hadronic nucleus polarizability to hyperfine structure of light muonic atoms

    Full text link
    The calculation of hadronic polarizability contribution of the nucleus to hyperfine structure of muonic hydrogen and helium is carried out within the unitary isobar model and experimental data on the polarized structure functions of deep inelastic lepton-proton and lepton-deuteron scattering. The calculation of virtual absorption cross sections of transversely and longitudinally polarized photons by nucleons in the resonance region is performed in the framework of the program MAID.Comment: 8 pages, 3 figures, Talk presented at 23th International Workshop on High Energy Physics and Quantum Field Theory (QFTHEP 2017

    Inverse hyperbolic problems and optical black holes

    Get PDF
    In this paper we give a more geometrical formulation of the main theorem in [E1] on the inverse problem for the second order hyperbolic equation of general form with coefficients independent of the time variable. We apply this theorem to the inverse problem for the equation of the propagation of light in a moving medium (the Gordon equation). Then we study the existence of black and white holes for the general hyperbolic and for the Gordon equation and we discuss the impact of this phenomenon on the inverse problems

    Shear stress induced stimulation of mammalian cell metabolism

    Get PDF
    A flow apparatus was developed for the study of the metabolic response of anchorage dependent cells to a wide range of steady and pulsatile shear stresses under well controlled conditions. Human umbilical vein endothelial cell monolayers were subjected to steady shear stresses of up to 24 dynes/sq cm, and the production of prostacyclin was determined. The onset of flow led to a burst in prostacyclin production which decayed to a long term steady state rate (SSR). The SSR of cells exposed to flow was greater than the basal release level, and increased linearly with increasing shear stress. It is demonstrated that shear stresses in certain ranges may not be detrimental to mammalian cell metabolism. In fact, throughout the range of shear stresses studied, metabolite production is maximized by maximizing shear stress

    Spherical averages in the space of marked lattices

    Get PDF
    A marked lattice is a dd-dimensional Euclidean lattice, where each lattice point is assigned a mark via a given random field on Zd{\mathbb Z}^d. We prove that, if the field is strongly mixing with a faster-than-logarithmic rate, then for every given lattice and almost every marking, large spheres become equidistributed in the space of marked lattices. A key aspect of our study is that the space of marked lattices is not a homogeneous space, but rather a non-trivial fiber bundle over such a space. As an application, we prove that the free path length in a crystal with random defects has a limiting distribution in the Boltzmann-Grad limit

    Contribution of hadronic light-by-light scattering to the hyperfine structure of muonium

    Full text link
    The contribution of hadronic scattering of light-by-light to the hyperfine structure of muonium is calculated using experimental data on the transition form factors of two photons into a hadron. The amplitudes of interaction between a muon and an electron with horizontal and vertical exchange are constructed. The contributions due to the exchange of pseudoscalar, axial vector, scalar and tensor mesons are taken into account.Comment: 13 pages, 1 figur
    • …
    corecore