330 research outputs found
Vortex core shrinkage in a two gap superconductor: application to MgB2
As a model for the vortex core in MgB2 we study a two band model with a clean
sigma band and a dirty pi band. We present calculations of the vortex core size
in both bands as a function of temperature and show that there exists a
Kramer-Pesch effect in both bands even though only one of the bands is in the
clean limit. We present calculations for different pi band diffusivities and
coherence lengths.Comment: Submitted to M2S-HTSC-VIII conference proceeding
Two-step flux penetration in layered antiferromagnetic superconductor
A layered antiferromagnetic superconductor in the mixed state may posses
magnetic domains created along the Josephson vortices. This may happen when an
external magnetic field is strong enough to flip over magnetic moments, lying
in the phase core of the Josephson vortex, from their ground state
configuration. The formation of the domain structure of the vortices modifies
the surface energy barrier of the superconductor. During this process the
entrance of the flux is stopped and a newly created state exhibits perfect
shielding. Such behavior should be visible as a plateau on the dependence of
flux density as a function of the external magnetic field. The end of the
plateau determines the critical field, which we call the second critical field
for flux penetration.Comment: 8 pages, 3 figure
Fermi surface topology and vortex state in MgB2
Based on a detailed modeling of the Fermi surface topology of MgB2 we
calculated the anisotropy of the upper critical field Bc2 within the two gap
model. The sigma-band is modeled as a distorted cylinder and the pi-band as a
half-torus, with parameters determined from bandstructure calculations. Our
results show that the unusual strong temperature dependence of the Bc2
anisotropy, that has been observed recently, can be understood due to the small
c-axis dispersion of the cylindrical Fermi surface sheets and the small
interband pairing interaction as obtained from bandstructure calculations. We
calculate the magnetic field dependence of the density of states within the
vortex state for field in c-axis direction and compare with recent measurements
of the specific heat on MgB2 single crystals.Comment: 2 pages, 2 figure
Tunneling spectroscopy in the magnetic superconductor TmNi2B2C
We present new measurements about the tunneling conductance in the
borocarbide superconductor TmNiBC. The results show a very good
agreement with weak coupling BCS theory, without any lifetime broadening
parameter, over the whole sample surface. We detect no particular change of the
tunneling spectroscopy below 1.5K, when both the antiferromagnetic (AF) phase
and the superconducting order coexist.Comment: Submitted to Phys. Rev. B, Rapid Communication
Influence of Fermi surface topology on the quasiparticle spectrum in the vortex state
We study the influence of Fermi surface topology on the quasiparticle density
of states in the vortex state of type II superconductors. We observe that the
field dependence and the shape of the momentum and spatially averaged density
of states is affected significantly by the topology of the Fermi surface. We
show that this behavior can be understood in terms of characteristic Fermi
surface functions and that an important role is played by the number of points
on the Fermi surface at which the Fermi velocity is directed parallel to the
magnetic field. A critical comparison is made with a broadened BCS type density
of states, that has been used frequently in analysis of tunneling data. We
suggest a new formula as a replacement for the broadened BCS model for the
special case of a cylindrical Fermi surface. We apply our results to the two
gap superconductor MgB and show that in this particular case the field
dependence of the partial densities of states of the two gaps behaves very
differently due to the different topologies of the corresponding Fermi
surfaces, in qualitative agreement with recent tunneling experiments.Comment: 12 pages 12 figure
Commensurate and Incommensurate Vortex Lattice Melting in Periodic Pinning Arrays
We examine the melting of commensurate and incommensurate vortex lattices
interacting with square pinning arrays through the use of numerical
simulations. For weak pinning strength in the commensurate case we observe an
order-order transition from a commensurate square vortex lattice to a
triangular floating solid phase as a function of temperature. This floating
solid phase melts into a liquid at still higher temperature. For strong pinning
there is only a single transition from the square pinned lattice to the liquid
state. For strong pinning in the incommensurate case, we observe a multi-stage
melting in which the interstitial vortices become mobile first, followed by the
melting of the entire lattice, consistent with recent imaging experiments. The
initial motion of vortices in the incommensurate phase occurs by an exchange
process of interstitial vortices with vortices located at the pinning sites. We
have also examined the vortex melting behavior for higher matching fields and
find that a coexistence of a commensurate pinned vortex lattice with an
interstitial vortex liquid occurs while at higher temperatures the entire
vortex lattice melts. For triangular arrays at incommensurate fields higher
than the first matching field we observe that the initial vortex motion can
occur through a novel correlated ring excitation where a number of vortices can
rotate around a pinned vortex. We also discuss the relevance of our results to
recent experiments of colloidal particles interacting with periodic trap
arrays.Comment: 8 figure
Nonlocal Effects and Shrinkage of the Vortex Core Radius in YNi2B2C Probed by muSR
The magnetic field distribution in the vortex state of YNi2B2C has been
probed by muon spin rotation (muSR). The analysis based on the London model
with nonlocal corrections shows that the vortex lattice has changed from
hexagonal to square with increasing magnetic field H. At low fields the vortex
core radius, rho_v(H), decreases with increasing H much steeper than what is
expected from the sqrt(H) behavior of the Sommerfeld constant gamma(H),
strongly suggesting that the anomaly in gamma(H) primarily arises from the
quasiparticle excitations outside the vortex cores.Comment: 4 pages, 4 figures, submitted to Phys. Rev.
Low plasma neurofilament light levels associated with raised cortical microglial activation suggest inflammation acts to protect prodromal Alzheimer's disease
BACKGROUND: Plasma and cerebrospinal fluid levels of neurofilament light (NfL), a marker of axonal degeneration, have previously been reported to be raised in patients with clinically diagnosed Alzheimer's disease (AD). Activated microglia, an intrinsic inflammatory response to brain lesions, are also known to be present in a majority of Alzheimer or mild cognitive impaired (MCI) subjects with raised β-amyloid load on their positron emission tomography (PET) imaging. It is now considered that the earliest phase of inflammation may be protective to the brain, removing amyloid plaques and remodelling synapses. Our aim was to determine whether the cortical inflammation/microglial activation load, measured with the translocator protein marker 11C-PK11195 PET, was correlated with plasma NfL levels in prodromal and early Alzheimer subjects. METHODS: Twenty-seven MCI or early AD cases with raised cortical β-amyloid load had 11C-(R)-PK11195 PET, structural and diffusion magnetic resonance imaging, and levels of their plasma NfL measured. Correlation analyses were performed using surface-based cortical statistics. RESULTS: Statistical maps localised areas in MCI cases where levels of brain inflammation correlated inversely with plasma NfL levels. These areas were localised in the frontal, parietal, precuneus, occipital, and sensorimotor cortices. Brain inflammation correlated negatively with mean diffusivity (MD) of water with regions overlapping. CONCLUSION: We conclude that an inverse correlation between levels of inflammation in cortical areas and plasma NfL levels indicates that microglial activation may initially be protective to axons in AD. This is supported by the finding of an inverse association between cortical water diffusivity and microglial activation in the same regions. Our findings suggest a rationale for stimulating microglial activity in early and prodromal Alzheimer cases-possibly using immunotherapy. Plasma NfL levels could be used as a measure of the protective efficacy of immune stimulation and for monitoring efficacy of putative neuroprotective agents
- …