41 research outputs found

    Scanning Small-Angle X-ray Scattering of Injection-Molded Polymers: Anisotropic Structure and Mechanical Properties of Low-Density Polyethylene

    Get PDF
    Injection molding is known to create a layered anisotropicmorphologyacross the sample thickness due to varying shear and cooling ratesduring the manufacturing process. In this study, scanning small-angleX-ray scattering was used to visualize and quantify the distributionof hierarchical structures present in injection-molded parts of low-densitypolyethylene (LDPE) with varying viscosities. By combining scatteringdata with results from injection molding simulations and tensile testing,we find that oriented shish-kebab structures, as well as elongatedspherulite structures consisting of semicrystalline ellipsoids, contributeto high ultimate tensile strength along the flow direction. Furthermore,we show that a higher degree of orientation is found close to theinjection gate and in LDPE with higher viscosity, consequently fromelevated shear and cooling rates present during the injection moldingprocess

    Ab initio investigation of monoclinic phase stability and martensitic transformation in crystalline polyethylene

    Get PDF
    We study the phase stability and martensitic transformation of orthorhombic and monoclimic polyethylene by means of density functional theory using the nonempirical consistent-exchange vdW-DF-cx functional [Phys. Rev. B 89, 035412 (2014)]. The results show that the orthorhombic phase is the most stable of the two. Owing to the occurrence of soft librational phonon modes, the monoclimic phase is predicted not to be stable at zero pressure and temperature, but becomes stable when subjected to compressive transverse deformations that pin the chains and prevent them from wiggling freely. This theoretical characterization, or prediction, is consistent with the fact that the monoclimic phase is only observed experimentally when the material is subjected to mechanical loading. Also, the estimated threshold energy for the combination of lattice deformation associated with the T1 and T2 transformation paths (between the orthorhombic and monoclimic phases) and chain shuffling is found to be sufficiently low for thermally activated back transformations to occur. Thus, our prediction is that the crystalline part can transform back from the monoclimc to the orthorhombic phase upon unloading and/or annealing, which is consistent with experimental observations. Finally, we observe how a combination of such phase transformations can lead to a fold-plane reorientation from {110} to {100} type in a single orthorhombic crystal

    Realistic Package Opening Simulations : An Experimental Mechanics and Physics Based Approach

    No full text
    A finite element modeling strategy targeting package opening simulations is the final goal with this work. The developed simulation model will be used to proactively predict the opening compatibility early in the development process of a new opening device and/or a new packaging material. To be able to create such a model, the focus is to develop a combined and integrated physical/virtual test procedure for mechanical characterization and calibration of thin packaging materials. Furthermore, the governing mechanical properties of the materials involved in the opening performance needs to be identified and quantified with experiments. Different experimental techniques complemented with video recording equipment were refined and utilized during the course of work. An automatic or semi-automatic material model parameter identification process involving video capturing of the deformation process and inverse modeling is proposed for the different packaging material layers. Both an accurate continuum model and a damage material model, used in the simulation model, were translated and extracted from the experimental test results. The results presented show that it is possible to select constitutive material models in conjunction with continuum material damage models, adequately predicting the mechanical behavior of intended failure in thin laminated packaging materials. A thorough material mechanics understanding of individual material layers evolution of microstructure and the micro mechanisms involved in the deformation process is essential for appropriate selection of numerical material models. Finally, with a slight modification of already available techniques and functionalities in the commercial finite element software AbaqusTM it was possible to build the suitable simulation model. To build a realistic simulation model an accurate description of the geometrical features is important. Therefore, advancements within the experimental visualization techniques utilizing a combination of video recording, photoelasticity and Scanning Electron Microscopy (SEM) of the micro structure have enabled extraction of geometries and additional information from ordinary standard experimental tests. Finally, a comparison of the experimental opening and the virtual opening, showed a good correlation with the developed finite element modeling technique. The advantage with the developed modeling approach is that it is possible to modify the material composition of the laminate. Individual material layers can be altered and the mechanical properties, thickness or geometrical shape can be changed. Furthermore, the model is flexible and a new opening device i.e. geometry and load case can easily be adopted in the simulation model. Therefore, this type of simulation model is a useful tool and can be used for decision support early in the concept selection of development projects

    Mechanics and Failure in Thin Material Layers : Towards Realistic Package Opening Simulations

    No full text
    The final goal of this PhD-work is an efficient and user-friendly finite element modelling strategy targeting an industrial available package opening application.  In order to reach this goal, different experimental mechanical and fracture mechanical tests were continuously refined to characterize the studied materials. Furthermore, the governing deformation mechanisms and mechanical properties involved in the opening sequence were quantified with full field experimental techniques to extract the intrinsic material response. An identification process to calibrate the material model parameters with inverse modelling analysis is proposed. Constitutive models, based on the experimental results for the two continuum materials, aluminium and polymer materials, and how to address the progressive damage modelling have been concerned in this work. The results and methods considered are general and can be applied in other industries where polymer and metal material are present.                                                                    This work has shown that it is possible to select constitutive material models in conjunction with continuum material damage models, adequately predicting the mechanical behaviour in thin laminated packaging materials. Finally, with a slight modification of already available techniques and functionalities in a commercial general-purpose finite element software, it was possible to build a simulation model replicating the physical behaviour of an opening device. A comparison of the results between the experimental opening and the virtual opening model showed a good correlation. The advantage with the developed modelling approach is that it is possible to modify the material composition of the laminate. Individual material layers can be altered, and the mechanical properties, thickness or geometrical shape can be changed. Furthermore, the model is flexible and a new opening design with a different geometry and load case can easily be implemented and changed in the simulation model. Therefore, this type of simulation model is prepared to simulate sustainable materials in packages and will be a useful tool for decision support early in the concept selection in technology and development projects

    Mechanics and Failure in Thin Material Layers : Towards Realistic Package Opening Simulations

    No full text
    The final goal of this PhD-work is an efficient and user-friendly finite element modelling strategy targeting an industrial available package opening application.  In order to reach this goal, different experimental mechanical and fracture mechanical tests were continuously refined to characterize the studied materials. Furthermore, the governing deformation mechanisms and mechanical properties involved in the opening sequence were quantified with full field experimental techniques to extract the intrinsic material response. An identification process to calibrate the material model parameters with inverse modelling analysis is proposed. Constitutive models, based on the experimental results for the two continuum materials, aluminium and polymer materials, and how to address the progressive damage modelling have been concerned in this work. The results and methods considered are general and can be applied in other industries where polymer and metal material are present.                                                                    This work has shown that it is possible to select constitutive material models in conjunction with continuum material damage models, adequately predicting the mechanical behaviour in thin laminated packaging materials. Finally, with a slight modification of already available techniques and functionalities in a commercial general-purpose finite element software, it was possible to build a simulation model replicating the physical behaviour of an opening device. A comparison of the results between the experimental opening and the virtual opening model showed a good correlation. The advantage with the developed modelling approach is that it is possible to modify the material composition of the laminate. Individual material layers can be altered, and the mechanical properties, thickness or geometrical shape can be changed. Furthermore, the model is flexible and a new opening design with a different geometry and load case can easily be implemented and changed in the simulation model. Therefore, this type of simulation model is prepared to simulate sustainable materials in packages and will be a useful tool for decision support early in the concept selection in technology and development projects

    Surpassing Threshold Concepts within Engineering Mechanics Interactive Computer Aided Learning (CAL) to support the learning process

    No full text
    This paper is based on a scientific literature review and interviews with teachers and researchers active in the area of Engineering Mechanics in Swedish higher education. The paper aims to identify and highlight troublesome knowledge and threshold concepts within the field of Engineering Mechanics. Moreover, the ambition is to present ideas of how to overcome these identified threshold concepts. Recent scientific research acknowledges many benefits of introducingdigital and interactive tools, denominated Computer Aided Learning (CAL), at an early stage. Digital and interactive tools can help engineering students overcome threshold concepts. A selection of these digital tools is discussed in this paper. The study concludes that elearning is an efficient way to enhance and complement the learning process. It also makes teaching material available from anywhere, at any time. Hence, students can individually adjust their learning pace. The interviews with teachers contributed to a clearer view of how dig-ital tools can be utilized and transform learning in mechanical engineering.Master students in mechanical engineering are expected to create, operate, and understand advanced digital tools. However, on the B.Sc. level, the implementation of digital tools seems to be scarce. Instead, textbooks, exercises with pen and paper, and traditional teaching are the preferred tools for learning. Implementing digital and interactive computer tools already on a basic teaching level (B.Sc.) can assist students to understand complex theories and overcome threshold concepts

    Advancements in package opening simulations

    Get PDF
    The fracture mechanical phenomenon occurring during the opening of a beverage package is rather complex to simulate. Reliable and calibrated numerical material models describing thin layers of packaging materials are needed. Selection of appropriate constitutive models for the continuum material models and how to address the progressive damage modeling in various loading scenarios is also of great importance. The inverse modeling technique combined with video recording of the involved deformation mechanisms is utilized for identification of the material parameters. Large deformation, anisotropic non-linear material behavior, adhesion and fracture mechanics are all identified effects that are needed to be included in the virtual opening model. The results presented in this paper shows that it is possible to select material models in conjunction with continuum material damage models, adequately predicting the mechanical behavior of failure in thin laminated packaging materials. Already available techniques and functionalities in the commercial finite element software Abaqus are used. Furthermore, accurate descriptions of the included geometrical features are important. Advancements have therefore also been made within the experimental techniques utilizing a combination of microCT-scan, SEM and photoelasticity enabling extraction of geometries and additional information from ordinary experimental tests and broken specimens. Finally, comparison of the experimental opening and the virtual opening, showed a good correlation with the developed finite element modeling technique

    Is it possible to open beverage packages virtually? Physical tests in combination with virtual tests in Abaqus.

    No full text
    The opening mechanism in a beverage package, where a mixed mode failure occurs, is a rather complex phenomenon. A better knowledge in respect of fracture mechanics is needed for the proactive prediction of the overall opening performance. Reliable material data used for virtual simulation of the opening mechanism is extracted by characterization and calibration of the packaging materials. Knowledge of how to choose appropriate constitutive models for the continuum material and how the damage initiates and propagates to various loading conditions is of great interest. The virtual tests, replicating the physical tests, are performed with the aid of the finite element method. Non-linear material response, anisotropic material behaviour, large deformation and fracture mechanics are identified effects that are all included in the virtual model. The results presented in this paper show possible selections of material models in conjunction with material damage models, adequately describing thin polymer films behaviour. Comparison between the physical test and the virtual test, exerted to fracture Mode I – Centre Cracked Tension, showed a good correlation for the chosen modeling technique

    An Experimental, Numerical and SEM Study of Fracture in a Thin Polymer Film

    No full text
    Observations and analysis of samples from scanning electron microscopic (SEM) micrographs has been concerned in this work. The samples originate from fractured mechanical mode I tensile testing of a thin polymer film made of polypropylene used in the packaging industry. Three different shapes of the crack; elliptical, circular and flat, were used to investigate the decrease in load carrying capacity. The fracture surfaces looked similar in all studied cases. Brittle-like material fracture process was observed both by SEM micrographs and the experimental mechanical results. A finite element model was created in Abaqus as a complementary tool to increase the understanding of the mechanical behaviour of the material. The numerical material models were calibrated and the results from the simulations were comparable to the experimental results
    corecore