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We study the phase stability and martensitic transformation of orthorhombic and monoclinic polyethylene by
means of density functional theory using the nonempirical consistent-exchange vdW-DF-cx functional [Phys.
Rev. B 89, 035412 (2014)]. The results show that the orthorhombic phase is the most stable of the two. Owing
to the occurrence of soft librational phonon modes, the monoclinic phase is predicted not to be stable at zero
pressure and temperature, but becomes stable when subjected to compressive transverse deformations that pin the
chains and prevent them from wiggling freely. This theoretical characterization, or prediction, is consistent with
the fact that the monoclinic phase is only observed experimentally when the material is subjected to mechanical
loading. Also, the estimated threshold energy for the combination of lattice deformation associated with the T1
and T2 transformation paths (between the orthorhombic and monoclinic phases) and chain shuffling is found to be
sufficiently low for thermally activated back transformations to occur. Thus, our prediction is that the crystalline
part can transform back from the monoclinic to the orthorhombic phase upon unloading and/or annealing, which is
consistent with experimental observations. Finally, we observe how a combination of such phase transformations
can lead to a fold-plane reorientation from {110} to {100} type in a single orthorhombic crystal.

DOI: 10.1103/PhysRevMaterials.2.075602

I. INTRODUCTION

The mechanical properties of semicrystalline polymers are
largely dictated by the microstructure and degree of crys-
tallinity of the polymer, which can vary substantially depend-
ing on the manufacturing technique and process settings. This
is attributed to the fact that the mechanical response of the
crystalline and amorphous regions are widely different, and
their respective parts interplay and jointly contribute to the
macroscopic properties. In terms of yielding, typically the
amorphous parts are ductile and can accommodate substantial
amounts of strain before rupture, and the crystalline parts
behave in a more brittle manner with the plastic deformations
constrained by preferential crystallographic orientations [1–4].
Thus, by varying the content of such phases and the process
strategy, widely different mechanical properties of semicrys-
talline polymers can be obtained [1,5], which complicates the
prediction of the mechanical response. In light of the large
number of industrial applications for such materials, ranging
from lightweight components in the automotive industry to
sealing screw caps for beverage and food packages, this issue
inhibits the capability to optimize the product performance and
to minimize the material expenditure.

The microstructure of high-density linear polyethylene (PE)
typically consists of a spherulitic semicrystalline arrangement
with alternating crystalline lamellae and amorphous layers [6].

*par.olsson@mau.se

Under normal conditions the lamellae structures are commonly
lozenge shaped crystals with the polymer chains ordered
according to an orthorhombic unit cell, arranged such that
the crystal side surfaces are terminated by {110} faces, while
the lamella surface normal direction coincides with the [001]
direction [6]. The polymer chains are folded back and forth
into the lamellae multiple times, such that they are primarily
aligned parallel to the orthorhombic c axis. This implies that
bonding in the c direction is dominated by strong covalent
bonding, whereas weak van der Waals (vdW) interaction is
the predominant bonding type in the transverse directions.
The lamellae are interconnected via tie molecules that extend
through the amorphous region to the neighboring lamella and
possibly even further. Such tie molecules and entangled poly-
mer segments are responsible for holding the polymer together.
The density of the polymer and the molecular structure depend
on the manufacturing technique and process timings, but the
size of the crystalline lamellae thickness typically lies in the
range 3–25 nm, whereas the lateral dimensions can reach up
to 50 μm [6–9].

Predicting the deformations and mechanical response of
semicrystalline polymers is a nontrivial task, since it involves
the interplay of mechanisms at different length scales [2].
Yielding of amorphous polymers is characterized by slippage
of the random chains, and the response depends strongly on
the chain entanglements. On the other hand, for crystalline
PE three important crystal plastic mechanisms have been
identified: (i) slip [8–21], (ii) twinning [8,13,22–24], and (iii)
martensitic transformation [8,16,22,23,25–31].
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The occurrence of martensitic transformation in polymer
crystals was initially indicated by the observation of extra
reflections in x-ray and electron diffraction patterns when
studying deformed crystals [22,26–29,32]. It was found that
the orthorhombic crystal transforms into that of a monoclinic
lattice [26]. Because such transformations typically cannot ac-
commodate the same amount of strain as slip, the deformations
are primarily found to accompany the early onset of yielding
for situations when slip is geometrically unfavorable. Thus, to
facilitate the slip, the crystal reorients to restore the geometrical
orientation such that glide can be initiated [9]. Owing to the
chain orientation and the covalent nature in the chain direction,
martensitic transformations of crystalline PE occur exclusively
by transverse deformations in the plane perpendicular to the
chain direction. The most plausible modes and those observed
experimentally belong to the T1 and T2 families of transfor-
mation [16,22,23,26] (referred to as A and B, respectively,
in [26]), which require the least amount of shearing strain.
Despite their frequent experimental observation, knowledge
of the transition strain energy and chain shuffling activation
energy remains unknown, which partly motivates this study.

Beside these issues, the mechanical stability of the mono-
clinic phase is a subject of debate. Experiments have indicated
that the monoclinic structure may be metastable or unstable and
is present only when it is subjected to stress. This conjecture
is based on the observation that deformed crystals transform
back to the orthorhombic structure upon relaxation and/or
annealing [33–35]. Based on x-ray diffraction experiments, the
mechanism by which the monoclinic phase transforms back to
the orthorhombic phase upon annealing has been investigated
[34]. It has been found to concur with that of the propagation
of the orthorhombic(110)/monoclinic(010) interface towards
the monoclinic side of the crystal, in accordance with the
predictions of the T1 and T2 transformation mechanisms.
Moreover, the fold planes of lamellae have been found to
change from {110} to {100} post-annealing. Such behavior
could be an implication that the monoclinic structure is
merely an intermediate configuration to accommodate fold-
plane transformations [7,8,36]. Hence, the stability of the
free-standing monoclinic phase remains elusive, which merits
further investigation.

In the present work we address these issues through
a theoretical atomistic exploration of the orthorhombic-to-
monoclinic phase transition and a discussion of its importance
for understanding mechanically induced phase transitions in
the PE system. Primarily, we seek to answer three questions
with our computational analysis: (i) How are the preferential
martensitic transition paths between the orthorhombic and
monoclinic phases characterized in terms of threshold energy,
chain shuffling, as well as strain energy and volume conserva-
tion? (ii) Under what conditions is the monoclinic phase stable?
(iii) What is the nature of the stabilization of the orthorhombic
phase at zero pressure? For the first issue, we compute the strain
energy landscape associated with the martensitic transforma-
tion and the activation energy connected with chain shuffling.
Such knowledge and data provide valuable discrete dislocation
and crystal plasticity input for macroscopic modeling. For the
second, we study the phonon characteristics with the intention
to characterize whether the monoclinic phase is stable or not.
For the third question, we correlate the phase differences in

cohesive energies with the changes emerging in the electron
density variation and with the variation in the interchain vdW
bonding.

Our analysis is based on first-principle density functional
theory (DFT) using the vdW density functional (vdW-DF)
method [37–39] in the recent consistent-exchange formulation
vdW-DF-cx [39,40]. This nonlocal correlation functional is
based on rigorous physical insight and can be expected to be
transferable with the capability to provide robust predictions
of materials behavior, free of all experimental input. The
vdW-DF-cx applicability is documented for the PE system and
it allows us to detail the nature of the molecular movement that
is associated with the martensitic phase transformation [21].

The remainder of the paper is organized as follows. In Sec. II
we introduce the simulation setups and provide computational
details. Results are presented and discussed in Secs. III and
IV, respectively, while Sec. V contains our summary and
conclusions.

II. SIMULATION SETUP AND
COMPUTATIONAL DETAILS

A. Investigated phases

The two phases considered in the present work correspond
to the orthorhombic (Pnam space group) and monoclinic
(C2/m space group) phases, see Figs. 1(a) and 1(b), respec-
tively. X-ray and neutron diffraction measurements at ambient
temperature (4–90 K) have revealed that the experimental or-
thorhombic lattice parameters correspond to a = 7.12–7.42 Å,
b = 4.85–4.96 Å, and c = 2.54–2.55 Å [42–45], where the
latter dimension is aligned with the polymer chain direction. As
depicted in Fig. 1(a), the molecular units are arranged such that
the chains are rotated by about 45° relative to the horizontal axis
and nearest neighboring chains are rotated about 90° relative
to each other.

The monoclinic crystal is characterized by three lattice
parameters, a = 8.09 Å, b = 4.79 Å, and c = 2.53 Å with the
tilt angle corresponding to 108° [22], cf. Fig. 1(b). However,
it should be noted that given the notion that the monoclinic
lattice is metastable/unstable this data may not correspond to
that of zero pressure. The molecular units in the monoclinic
unit cell are arranged such that the neighboring chains along
the horizontal axis in Fig. 1(b) are rotated by 180°.

To determine the optimal lattice parameters for the two
phases, we performed semirelaxed DFT calculations to find
the configuration that minimizes the ground state energy. To
this end we incrementally varied the lattice parameters and
the tilt angle, while allowing all atomic coordinates to relax
fully. A conventional relaxation scheme with concurrent stress
and atomic coordinate relaxation was not performed due to
the fact that the elastic constants vary significantly (by more
than one order of magnitude) in the chain and transverse
directions, which made it hard to obtain convergence for the
stress relaxation.

B. Phase transformation

In the present work we consider two types of martensitic
transformations: T12 and T21 [16,22,23] (hereafter referred to
as T1 and T2, respectively). Because the transitions in general

075602-2



Ab INITIO INVESTIGATION OF MONOCLINIC … PHYSICAL REVIEW MATERIALS 2, 075602 (2018)

FIG. 1. Illustration of the considered transformation paths from
orthorhombic to monoclinic PE viewed along the chain direction.
The primitive cells are indicated by the dashed lines. (a) The solid
lines indicate the initial supercells for the T12 and T21 transformation
paths and the {110} and {100} planes of the orthorhombic lattice.
(b) Illustration of the final states of monoclinic PE for the transition
paths. The solid lines indicate the supercells and the {010} and {100}
planes of the monoclinic lattice. (c) Definition of the supercell vectors
a∗ and b∗ and the tilt angle β. (a) and (b) Generated using the VESTA
code [41].

are nonaffine, the molecular units do not follow the Cauchy-
Born rule [46], which suggests that the atomic positions cannot
be directly mapped along with the deformations. This can
be realized for instance by the fact that the nearest neighbor
molecular units for the monoclinic phase are rotated by 180°
relative to each other, whereas those of the orthorhombic phase
are rotated by about 90°, see Fig. 1. Hence, we adopted a pro-
cedure that enabled us to estimate the strain energy associated
with lattice deformations and the chain shuffling activation
energy. For the first part we mapped out the ground state
energy for different combinations of lattice parameters and
tilt angles. Because different molecular chain configurations
can minimize the ground state energy for different amounts of
strain we tried different initial guesses of the rotational angle
around the chain axis for each molecule for each configuration.
From this initial state we let the atomic coordinates relax fully
while fixing the supercell, such that the atoms were allowed
to reach equilibrium for each strain increment. This way we
improved the basis for finding the optimal molecular chain
configuration for each strain increment, which enabled the
identification of the minimum energy lattice deformation path.

Alternative representations of the orthorhombic unit cell
are needed depending on the transformation mode considered.
Therefore we defined the supercell vectors a∗ and b∗, and the
tilt angle β to describe the transverse extension of the supercell,
as depicted in Fig. 1(c). For the T1 transformation, we utilized
a supercell for the initial state that had twice the volume of
the primitive cell, as seen in Fig. 1(a). For this representation
the planar supercell vectors a∗ = (a,b,0) and b∗ = (−a,b,0)
were used. From the experimental lattice parameters, β can
be computed to be 112° for this representation. The other
supercell depicted in Fig. 1(a) corresponds to the initial state
for the T2 transformation, for which the supercell vectors
are a∗ = (−a,b,0) and b∗ = (0,b,0). This implies that the
tilt angle between the supercell vectors initially is 124°. For
the final state of T1 we double the volume of the monoclinic
primitive cell by letting b → 2b, see Fig. 1(b), such that it
complies well with the initial state. These representations of
the orthorhombic and monoclinic lattices were chosen on the
basis that they can be used to model the phase transition, which
is reflected by the fact that the tilt angles between the supercell
vectors of the initial state are similar to those of the final state.

In principle there are three parameters that need to be varied
to fully cover the space of possible transition paths: the lengths
of the supercell vectors a∗ and b∗ and the angle β between
them. However, to visualize the strain energy landscape we
reduce the number of parameters to two by making the
third linearly dependent on the others, which requires some
elaboration. For T1, because β only changes very little (from
112° for orthorhombic to 108° for monoclinic) we primarily
vary the lengths of the supercell vectors independently to fit
those of the orthorhombic and monoclinic phases. To ensure
that we concurrently change the tilt angle we vary it linearly
with the length of b∗. For the T2 transition path, we use an
alternative representation to describe the deformation path.
Because the length of b∗ only changes from about 4.89 to
4.79 Å when transforming from orthorhombic to monoclinic,
we instead map the strain energy landscape by varying the
length of a∗ and β. To make sure that the lattice parameters of
the optimal lattices are met, the length of b∗ is varied linearly
with β.

To account for the energy required to perform chain rota-
tions, we used the nudged elastic band (NEB) method [47,48]
to compute the activation energy needed for a single chain to
rotate in the orthorhombic [see Fig. 1(a)] and in the mono-
clinic molecular configurations [see Fig. 1(b)]. This approach
allowed us to quantify whether the elastic or rotational energies
dominate the transformation and enabled us to investigate if the
required combined activation energy is low enough for the back
transition to be thermally activated.

C. Computational details

All DFT simulations in this work were performed using the
open-source plane-wave based Quantum Espresso (QE) soft-
ware suite [49,50]. For describing the electron-ion interaction
we used the ultrasoft pseudopotential approach [51,52] with
the electron description for C comprising the 2s22p2 states,
while that of H consisted of a 1s1 electron. We chose the
kinetic energy cutoff for the plane-wave basis set and k-point
density such that the ground state energy was converged to
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within less than 1 meV/CH2 unit. To achieve this, we used a
kinetic energy cutoff of 60 Ry (1 Ry = 13.6 eV) and the energy
cutoff for the electron density is set to 600 Ry. We utilized a
k-point grid for the first Brillouin zone of the orthorhombic
primitive cell corresponding to a �-centered 6 × 6 × 12 sized
grid (for the reciprocal a × b × c lattice), generated by means
of the Monkhorst-Pack method [53]. This was found sufficient
to produce well-converged results. The k-point mesh for the
supercell used for the monoclinic primitive cell was made
commensurate with the orthorhombic primitive cell.

For the phonon calculations we adopted the density func-
tional perturbation theory approach as implemented in QE
[54]. To prevent boundary induced artifacts from the periodic
conditions, phonons were computed using supercells with
twice the volume of the primitive cell, i.e., those depicted
to the left in Figs. 1(a) and 1(b) for the orthorhombic and
monoclinic phases, respectively. The dynamical matrices and
force constants were computed and evaluated on a 2 × 2 × 6
q-point grid, from which the phonon dispersion curves were
interpolated. To improve the accuracy of the computed force
constants, we enforce the acoustic sum rule. The explicit
algorithm that is used for this purpose is a subspace projected
approach for finding the optimal solution of the coupled
acoustic sum rules, as outlined by Mounet [55]. This modeling
strategy and employed q-point density was found to yield
well-converged phonon data.

For investigating the threshold energy associated with chain
rotation in the orthorhombic and monoclinic phases, we used
the NEB method [47,48] to obtain the activation energy. For
the simulations we study the gradual rotation of a single chain
from 0° to 180° around the axis through the chain’s center of
mass, as illustrated in Fig. 2. To this end we utilized 11 (one
initial, nine intermediate, and one final) images to represent
the gradual rotational movements. To avoid artifacts emanating
from finite size we considered relatively large supercells with
sides not smaller than 14 Å, as shown in Fig. 2. Moreover,
to prevent unnaturally high repulsion from the neighboring
chains that may corrupt the results, we allowed all atoms in
the supercell to undergo relaxation. This approach, combined
with the chosen supercell sizes, was found to yield an activation
energy converged within less than 5 meV/CH2 accuracy, which
is sufficient for the present investigation.

The choice of exchange-correlation functional for soft and
sparse matter is a delicate issue that requires some elaboration.
Since modeling of the martensitic transformation and phonons
in PE are typical soft- or sparse-matter problems, we needed
to employ a suitable exchange-correlation functional for an
accurate description of the interatomic interaction. Owing to
the importance of vdW interaction in the considered system,
a formulation of the vdW-DF method [37,38,56–60] was
considered appropriate.

In the present work we used the recent consistent-exchange
vdW-DF-cx formulation [40]. There are formal arguments
to expect a high degree of transferability for this nonlocal
exchange-correlation formulation, also when materials (such
as PE) combine regions with both dense and sparse electron
concentrations [39,59]. Also, it has shown high predictive
capabilities in terms of reproducing the librational phonon
modes of organic crystals [61] and robustness when it comes to
providing restoring forces for strained bond lengths [62]. For

FIG. 2. Schematic illustration of supercell size and the chain
shuffling considered for the NEB calculations of the (a) orthorhombic
and (b) monoclinic phase.

the case of PE, the vdW-DF-cx functional has shown an ability
to predict both the lattice parameters and elastic constants of
orthorhombic PE in good agreement with experimental data,
where local or semilocal formulations, such as conventional
LDA or GGA, fail [21]. Finally, as demonstrated below, in the
present work we observed a good agreement between experi-
mental and vdW-DF-cx characterizations of the orthorhombic
phonon data. These traits suggest that vdW-DF-cx is a suitable
functional choice for the all-theory characterization of the PE
martensitic transformation and relative phase stability that we
pursued here.

III. RESULTS

A. Ground state data

The results of the lattice optimizations show that the dif-
ference in ground state energy (without zero point correction)
between the two phases is about 1.5 meV/CH2 unit in favor
of the orthorhombic phase. This concurs with the fact that
the orthorhombic lattice is most commonly observed. For this
phase we have summarized the optimal lattice parameters in
Table I together with computed and experimental data from
other sources. The obtained results are found to agree quite
well with the experimentally measured data. For the initial
configuration of the T1 transformation, β corresponds to 110°,
agreeing well with the experimental data of 112°. Likewise for
the initial T2 configuration the tilt angle becomes 125°, which
agrees with the experimental data of 124°.

Compared with the vdW-DF-cx results, the general ob-
servation is that the LDA data underestimate the transverse
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TABLE I. Computed and experimentally measured lattice param-
eters and one of the elastic constants (C11) of the orthorhombic system.
The data is presented in Å and GPa, respectively.

Source a b c C11

DFT (vdW-DF-cx, this work) 7.19 5.02 2.55 9.0
DFT (LDA [63]) 6.73 4.53 2.52
DFT (LDA [64]) 6.75 4.65 2.53 16.0
DFT (LDA [65]) 6.55 4.45 2.52
DFT (PBE-GGA, this work) 8.13 5.59 2.56
DFT (PBE-GGA [63]) 8.28 5.64 2.57
DFT (PBE-GGA [64]) 8.43 5.57 2.56
DFT (PBE-GGA [65]) 7.30 5.02 2.57 39.2
DFT (vdW-DF [66]) 7.30 5.22 2.57
DFT (vdW-DF [67]) 7.34 5.19 2.58
DFT (vdW-DF2 [67]) 7.05 4.98 2.58
DFT (DF-C09 [67]) 6.84 4.76 2.55
DFT (DF-optB88 [67]) 6.93 4.85 2.56
DFT (DF-optB86b [67]) 6.95 4.86 2.56
DFT (revDF2 [67]) 6.97 4.88 2.56
DFT (rVV10 [67]) 6.90 4.77 2.56
Expt. (x-ray, 77 K [44]) 7.42 4.96 –
Expt. (x-ray, 77 K [42]) 7.39 4.93 2.54
Expt. (neutron, 4 K [43]) 7.12 4.85 2.55
Expt. (neutron, 90 K [43]) 7.16 4.87 2.55
Expt. (neutron, 10 K [45]) 7.12 4.84 –
Expt. (neutron, 300 K [45]) 7.42 4.94 –
Expt. (phonons [68]) 11.5
Expt. (ultrasonic [69]) 8.4

lattice parameters (i.e., a and b) by the order of 0.5 Å. This
deficiency is believed to be due to the well known overbinding
and the lacking of weak vdW forces [75,76], which limit
the applicability in sparse matter. Depending on the literature
source, the reported performance of GGA calculations varies
significantly. It has been reported that the lattice parameters
are either largely overestimated (cf. [63,64] and this work)
or in good agreement with experimental data (cf. [65]), see
Table I. However, despite good agreement with experimental
lattice parameters, such calculations typically suffer from
other deficiencies. In particular the computed elastic con-
stants associated with transverse deformation are substantially
overestimated. For instance in [65], the reported value of
C11 ≈ 40 GPa, while the experimental data lie in the range
8.4–11.5 GPa [68,69], implying that the transverse bonding is
not accurately accounted for. This elastic constant relates to
the stretching of the orthorhombic a-lattice parameter, which
we in the present work find to be C11 ≈ 9.0 GPa in accordance
with experimental data.

In addition to the aforementioned data in Table I, we have
compared the obtained optimized lattice parameters for PE
with those computed by Kleis et al. [66] and Pham et al.
[67] for a wide range of nonlocal formulations. Specifically,
we have compiled data for the vdW-DF [37], vdW-DF2 [77],
DF-C09 [78], DF-optB88 [79], DF-optB86b [80], revDF2
[81,82], and rVV10 [83] functionals. In terms of predicted
lattice parameters, those found in the present work for the
vdW-DF-cx compare well with those found for the vdW-DF
and vdW-DF2 formulations in the literature. The remaining

functionals (DF-C09, DF-opt88, DF-opt86b, revDF2, rVV10)
predict a slightly underestimated a-lattice parameter, whereas
b concurs with experimental data.

The computed lattice parameters for the monoclinic lattice
correspond to a = 7.90 Å, b = 4.87 Å, and c = 2.55 Å,
which deviate from the experimental data by less than 3%.
As comparison we computed the lattice parameters using
PBE-GGA, which resulted in a = 9.04 Å, b = 5.50 Å, and
c = 2.56 Å, which substantially overestimate the experimental
data. The computed respective tilt angles correspond to 108°
and 112°, of which the former concurs well with experimental
data.

B. Phonons

To investigate the mechanical stability of the two phases,
we compute the phonon dispersion and density of states, see
Figs. 3 and 4.

1. Orthorhombic phase

The phonon branches of the orthorhombic phase can be
seen in Fig. 3(a). The fact that no branches assume soft modes
for the orthorhombic phase implies that it is stable. Because
phonons can be sensitive to the choice of the pseudopotentials
and the exchange-correlation functional used to generate them,
we validate the predictability by comparing the transverse
and longitudinal branches for the path between the � and
Z symmetry points [74] with experimental data [70,71]. The
computed results reproduce the experimental data for the
acoustic and librational modes with an overall good match,
see Fig. 3(b).

Translational modes can be problematic to model with DFT,
especially when the intermolecular interaction is weak. The
phonon frequencies for the lowest B1u and B2u translational
modes at the � point [see Fig. 3(c)] can serve as a test
case. Their phonon frequencies are identified in Fig. 3(b) and
they correspond to 8.9 and 11.5 meV, respectively, which are
underestimated by up to about 15% compared to the respective
measurements of 9.9 and 13.4 meV [72,73] at low temperature.
However, for higher frequency modes this discrepancy is
reduced, as seen for instance by tracing the associated phonon
branches in Fig. 3(b). This suggests that the B1u/B2u deviation
is an upper bound on the errors made in our translational
phonon characterization. This is in line with the results reported
for crystalline naphtalene in [61], where the discrepancy
between experiment and modeling was found to be about 10%
and occurred for the low frequency translational modes.

As a consequence that we consider a cell with twice the vol-
ume of the primitive cell, we find that there are nine antiparallel
rocking modes and four librational optical modes displaying
chain rotational displacements [the latter corresponding to
those depicted in Fig. 3(d)]. It should be noted that modes
14 and 15 are merely translated and rotated in the supercell,
which means that they are degenerate. The librational modes
are important for describing the chain rotations associated with
orthorhombic to monoclinic transformation. As can be seen
for modeshapes 12 and 14–16, the chain rotations are arranged
such that they rotate in the same direction (such as in inset 12 in
Fig. 3(d)) or in opposite directions [insets 14–16 in Fig. 3(d)]
and they need not display the same displacement amplitude

075602-5



PÄR A. T. OLSSON et al. PHYSICAL REVIEW MATERIALS 2, 075602 (2018)

FIG. 3. (a) Phonon dispersion and density of states for stress-free orthorhombic PE along with (b) a high resolution image the low frequency
phonon dispersion branches for the �-Z path compared with experimental results [70–73]. The k-vector notation and Brillouin zone paths are
adapted from [74] with branches associated with modes 9 and 12–16 as well as the B1u and B2u translational intermolecular modes highlighted.
(c) Illustration of modes 9 and 13 at the � point that correspond to the lowest B1u and B2u translational intermolecular modes, respectively.
The arrows indicate the translational directions of the individual chains. (d) Illustration of the librational intermolecular modes 12 and 14–16
computed at the � point, which constitute the optical modes with rigid chain rotations around the [001] axis (note that 14 and 15 are degenerate).
The arrows indicate the rotational directions of each chain and the size of arrows indicate the relative magnitude.

as the neighboring chain [insets 14 and 15 in Fig. 3(d)].
From Fig. 3(b) it is seen that the branches associated with the
librational modes fit the experimental data well. This confirms
that the utilized phonon modeling approach has satisfactory
predictive capabilities for the current study.

2. Monoclinic phase

In light of the conjecture that the monoclinic phase may
be a stress induced phase we have studied how the phonon
spectrum varies with applied transverse strain. To this end we
applied normal strains εa and εb, such that the lengths of a and
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FIG. 4. Phonon dispersion and density of states for monoclinic PE
for (a) εb = 0. High resolution image of the low frequency phonon
dispersion branches in the proximity of (b) � and (c) X for εb

illustrating the soft mode. The imaginary frequencies are indicated
as negative frequencies in (a)–(c). Phonon dispersion and density of
states for monoclinic PE for (d) εb = −4%.

b were varied. Even though we tested different combinations
of such strains, we only present the results for two states
corresponding to εb = 0 and εb = −4%, respectively, see
Fig. 4. These states were found to be representative for all
considered combinations.

For the stress-free situation there are soft modes present
that suggest that the phase is dynamically unstable, see

FIG. 5. (a) Activation energy curve Q for concerted modeshape
displacements of the soft mode computed by means of NEB. The end
points were not allowed to undergo any relaxation, which suggests
that the energy levels for φ = ±30° are overestimated. Logarithmic
charge density plots for (b) εb = 0 and (c) εb = −4% with volume
specific density levels in units of e/a3

0 , where e denotes the number
of electrons and a0 is the Bohr radius. The charge density plots are
generated using the XCrysDen software [84].

Figs. 4(a)–4(c). Specifically, the imaginary frequencies appear
at the � and X symmetry points, which are situated at the origin
and the Brillouin zone boundary, respectively (for details see
[74]). To gain insight on the molecular movements associated
with the soft mode, we investigate the atomic displacements
for the � and X wave vectors. The modeshape is found to
be the same type for both wave vectors: a librational mode
represented by chain rotations around the center of gravity, of
the same type as depicted in Fig. 3(d) inset 16.

To investigate the physics behind the soft modes, we utilize
the NEB method and simulate a concerted shuffling mechanism
that reproduces the modeshape of the imaginary mode. To this
end we rotate each chain by gradually increasing the rotation
angle in the direction indicated by the modeshape. The results
from this analysis reveal that the potential energy landscape
is virtually flat when the rotation angle is varied between
−15° to 15°, see Fig. 5(a). This indicates that the chains can
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wiggle back and forth without resistance, which implies that
the monoclinic phase is not stable in the low temperature
limit. However, it is possible that the phase can be entropically
stabilized by phonon-phonon interactions resulting from an
increase of the temperature, which would suggest that the phase
is metastable at most. Such behavior has been observed for the
stabilization of high-temperature body-centered-cubic phases
in metals [85,86] and to model this one has to utilize methods
that captures anharmonic or even nonadiabatic effects, which
lies beyond the scope of this paper.

If we compress the b lattice parameter by 4%, the soft
modes disappear, see Fig. 4(d). In effect, the monoclinic phase
becomes stable if the lateral dimensions are reduced such
that the molecular chains are prevented from rotating. Such
transverse deformations can appear as a Poisson effect when
the polymer is strained in the chain direction. This result
could explain why the phase is only seen when the material
is subjected to loading and why it disappears upon relaxation
and/or annealing.

To further explore the mechanisms responsible for this
behavior, we have studied the link between coordinate changes
and charge distributions for both εb = 0 and εb = −4%,
see Figs. 5(b) and 5(c), respectively. The unstrained cell is
characterized by regions of depleted charge density, suggesting
that the H-H repelling is not severe. Our results show that the
chains tilt to align with the b-lattice vector, when subjected to
compressive strain, see Fig. 5(c). Based on a comparison of
the charge density plots, we interpret the tilting as occurring
because the Pauli principle becomes increasingly more rele-
vant with compression. This is due to a reduced interatomic
distance between H atoms of neighboring molecular chains
and a disappearance of the charge-depleted regions arising
in concert with the tilting. In this tilted state, the polymer
chains are pinned by the surrounding repelling H atoms of
the neighboring molecules. They are then prevented from
wiggling freely, which causes the phonon instabilities to
disappear.

C. Orthorhombic-monoclinic transformation

For the transformation between the two phases to occur,
two things need to happen: (i) the lattice needs to deform and
(ii) the molecular chains need to shuffle such that the chain
arrangements agree with those of the ground state structures.
Since both mechanisms contribute to the threshold energy
of the transformation we need to quantify them. Below we
investigate their separate contributions.

1. Lattice deformation

For the lattice deformations it turned out that all lowest
energy equilibrium configurations originated from molecular
arrangements where the chains were either organized as those
of the orthorhombic unit cell [i.e., approximately 90° rotated,
see Fig. 1(a)] or as the monoclinic cell [i.e., aligned with a
180° skeletal rotation, see Fig. 1(b)]. Thus, in practice the
strain energy landscape reflects the competition of lowest
ground state energy of different chain arrangements for varied
lattice parameters. Therefore to present the strain energy
landscape we define the strain energy amplitude associated
with each strain increment as E = min(Eortho,Emono), i.e., we

take the lowest ground state energy of the relaxed config-
urations emanating from initial states with chains arranged
according to either the orthorhombic or the monoclinic cell.
The reference energy corresponds to that of the ground state
of the orthorhombic phase.

Figure 6 shows that for both transition paths, there is a
saddle point in the strain energy at which the chain arrangement
preference is changed. For both cases this is found to be
∼4 meV/CH2 unit. Inspection of the coordinate variation
shows that the saddle point serves as a distinct point where
the rotated molecular configuration of the orthorhombic phase
obtains a higher ground state energy than the aligned molecular
configuration of the monoclinic cell, cf. Figs. 6(a) and 6(b).
Thus, the saddle region effectively is the border between
the two possible molecular chain arrangements and indicates
where it is energetically favorable for the molecules to re-
arrange. This switch is from an arrangement where nearest
neighboring chains are rotated by about 90° to that of the
monoclinic cell, where the chains are organized according to
Fig. 1(b).

The fact that the isovolume curves in Fig. 6 to a great extent
are perpendicular to the energy isolevels and approximately
pass through saddle points, indicates that the deformations
are approximately volume conserving. This implies that the
supercell deformation can be described in terms of a pure
shearing mode accompanied by chain rotations, as proposed
by Bevis and Crellin [22].

As indicated by the insets in Fig. 6, at the saddle point
(i.e., insets a4 and b4 in Fig. 6), the molecular chains are
tilted, similar to Fig. 5(c). But as the lattice parameters
approach those of the monoclinic (i.e., insets a6 and b6),
the molecular chains adapt the orientation of the stress-free
monoclinic phase as indicated in Fig. 1(b). Although this
tilting can be seen as concerted chain shuffling, it does not
reflect the fact that the molecules need to reorient from
a nonaligned to an aligned chain configuration, which in
the next section is shown to require much higher activation
energy.

To better understand the nature of the strain energy land-
scapes, we study the charge density distributions at minima
and saddle points. We find that high ground state energy
configurations are accompanied by the formation of regions
of depleted charge density as well as those of unusually high
charge density. The high density regions are particularly no-
ticeable whenever the separations of H atoms from neighboring
molecules are small, which cause the concerted chain tilting.
This can be realized for instance by tracing the charge density
plots along the constant volume curves in Fig. 6 from the
stable orthorhombic structure to the monoclinic. During this
transition, the amount of low and high density regions increases
substantially, unless the molecules gradually reorient to reduce
the ground state energy.

The fact that there is an emergence of regions of reduced
charge density during the transition implies that vdW in-
teraction is the main contributor to the landscape variation.
To investigate this closer, Fig. 7 documents the total strain
energy E and vdW energy Enl

c contributions to the optimal
isovolume T1 path. The latter of these contributions represents
the extent to which the cohesion arises as a partial contribution,
originating from the vdW-DF-cx nonlocal correlation energy
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FIG. 6. Strain energy landscapes for (a) T1
and (b) T2 deformation mechanisms. The strain
energy E is measured in meV/CH2 unit, with
an uncertainty of less than ±0.5 meV/CH2

unit. The dashed lines correspond to isovolume
curves. The insets correspond to logarithmic
charge density plots for the relaxed equilibrium
configurations using orthorhombic and mono-
clinic molecular arrangements as initial states.
The units for the density levels are the same
as in Fig. 5 and the legend applies for both (a)
and (b).

term. This term describes the vdW interactions in the system
and it reflects the interchain vdW binding in the PE crystal.
Analysis of Fig. 7 reveals that the peak strain energy and
the majority of the overall behavior can be attributed to the
vdW forces, and thus the vdW interaction constitutes the major
contribution to the strain energy. The fact that the end points of
the curves in Fig. 7 overlap is an indication that the ground state
energy difference between the two phases is solely dictated by
the vdW interaction.

2. Chain shuffling

The second contribution to the threshold energy associated
with martensitic transformation is the energy required for
the chains to rearrange from a nonaligned configuration to
an aligned. To quantify this contribution we consider the
activation energy needed for a single chain to rotate 180°.
To estimate the activation energy we use the NEB method to
compute the energy required for rotating a molecular chain in
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FIG. 7. Strain energy curve of the optimal T1 lattice deformation
path and documentation of key role of vdW forces. The set of black
markers identify computations of the total strain energy (per polymer
repeat unit) in the PE crystal for a set of representative lattices along
the isovolume curve of Fig. 6(a). The set of red markers shows
the strain energy contributions that arise alone from the nonlocal
correlation energy part, i.e., the part of the vdW-DF-cx functional
that captures the vdW binding.

the equilibrium orthorhombic and monoclinic phases. Figure 8
shows that the threshold for these transitions lies in the range
of 35–50 meV/CH2, which is approximately ten times higher
than the threshold energies associated with lattice deformation.
Thus, individual chain shuffling dominates and represents the
bulk of the threshold energy associated with the martensitic
transformation.

The NEB calculations further reveal that the activation
energy for rotation is less in the monoclinic configuration,
which indicates a preference for rotation in that state. The fact
that there are local minima for the rotation corresponding to
90°, implies that chain arrangements with stems aligned or
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FIG. 8. Estimated activation energies Q for a single chain rotation
in the equilibrium orthorhombic and monoclinic phases, computed
for the ideal equilibrium lattice parameters of the respective phases
by means of the NEB method. The black markers indicate the total
energy, whereas the red markers represent the nonlocal correlation
contribution.

perpendicular are in a (potentially) metastable state. In the
same manner as for the lattice deformation, we quantify the
vdW contributions to the activation energy in Fig. 8. It is
found that they are relatively small in comparison with the
total activation energy, of which they constitute about 10%.
Hence, other mechanisms, such as repulsion from close ranged
H atoms of neighboring chains, are more important when
describing the chain shuffling activation energy.

IV. DISCUSSION

In the present section we discuss the main findings and
relate them to experimental observations. The results of our
nonempirical modeling reveal primarily two very interesting
observations: (i) soft phonon modes of the monoclinic phase
and (ii) low strain energy required to transform from the
orthorhombic to the monoclinic phase accompanied with
relatively high activation energy needed for chain shuffling.

The soft phonon modes associated with the monoclinic
phase is an indication that it is not stable in the low temperature
limit. Based on the analysis of the associated modeshape, the
soft modes emanate from the fact that the activation energy
for the modeshape movement is zero. This can give rise
to a spontaneous wiggling chain motion that manifests in
imaginary phonon modes. Although it is beyond the scope of
this work to study, it is possible that the phase can be stabilized
by phonon-phonon interaction if the temperature is increased.

In characterizing the chain shuffling process (illustrated in
Fig. 2) we have chosen to focus on atomic displacements that
are similar, although not identical, to those of the phonon mode
[labeled 16 in Fig. 3(d)] that is found unstable for the mono-
clinic phase. Our results for the chain shuffling threshold reflect
a Born-Oppenheimer (BO) description that is directly available
in ground state DFT, while the phonon analysis is a beyond-BO
characterization of stability. The differences between the BO
and phonon characterizations of monoclinic phase stability
make it desirable to eventually seek a DFT-based account of the
nonadiabatic atomic dynamics, see for instance [85–87]. The
strong performance for descriptions of the relevant soft-matter
librational modes suggests that vdW-DF-cx would be useful,
but such an exploration is beyond the present scope. However,
as discussed below, many experimental observations can be
understood already from the present DFT-based results.

The fact that the soft modes disappear when subjected to
transverse deformation is an indication that the monoclinic
phase is stabilized when subjected to loading. This is in accor-
dance with results from experiments that have revealed that the
monoclinic phase is only observed under such conditions. The
strain induced phonon stability is accompanied by chain tilting
that appears as a consequence of reduced H-atom distance
of neighboring molecules. The tilting emanates from charge
density overlap in the close proximity of closely spaced H
atoms of neighboring molecules. Thus, to reduce the energy,
the chains are forced to tilt such that the H-H separation
is increased. Moreover, such rotations reduce the regions of
low charge density and lead to more uniform charge density
distributions, which in previous investigations have been found
to correlate strongly with reducing the ground state energy in
PE [21]. Once in this tilted state, the closely spaced H atoms
pin the chains and prevent them from wiggling freely, which
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FIG. 9. Possible low threshold energy transition path for lamellae fold planes in crystalline PE. The transition goes from orthorhombic
{110} to orthorhombic {100} via monoclinic {100}, by the employment of a T1 transformation followed by a reversed T2 transformation.

is the reason why the instability modes disappear when the
b-lattice parameter of the monoclinic phase is subjected to
compressive strains. Such strains could emanate either from
compressive transverse loads or as a Poisson effect following
tensile loading in the chain direction.

The strain energy threshold associated with lattice defor-
mation between the orthorhombic and monoclinic phases is
found to be very small, of the order of 4 meV/CH2 unit for
both the T1 and T2 mechanisms, and it can be exclusively
derived from the vdW interaction. These mechanisms do not
account for chain shuffling, for which the activation energies
were assessed to lie in the range of 35–50 meV/CH2 unit. Thus,
the combined energy threshold for both lattice deformation and
chain shuffling can be estimated to about 40—55 meV/CH2

unit in the adiabatic description provided by ground state DFT
calculations. In order to investigate the possibility of thermally
activated back transformation, we compare the threshold en-
ergy with that of kBT , which is a measure of the averaged
kinetic energy. In the temperature range 0 to 300 °C, this
translates to about 25–50 meV, which is of the same order as
the estimated combined threshold energy associated the phase
transformation. Hence, it is possible for back transformation
to be thermally activated. This could explain the experimental
observation of annealing above 110 °C leading to back trans-
formation from the monoclinic to the orthorhombic phase [35].

The fact that the soft modes of the monoclinic phase
can disappear when subjected to relatively small transverse
strains could be an indication that it serves as an intermediate
configuration that will transform back to the orthorhombic
phase when unloaded and relaxed, for instance through the
T1 or T2 mechanisms. Since the threshold energy for both
mechanisms are of the same order, they may occur with roughly
the same probability. This suggests that there are more than one
way through which the back transformation from monoclinic
to orthorhombic phase can occur following relaxation and/or
annealing, as illustrated in Fig. 9. Thus, when loading the
orthorhombic phase [such that it transforms to the monoclinic
phase (Sec. II B) via the T1 mechanism], the monoclinic
phase can either transform back to the orthorhombic phase
via (i) a reversed T1 or (ii) a reversed T2 mechanism upon
unloading and relaxation. If (i) occurs the lamellae will have
the same fold surfaces as before loading. Such transformation
corresponds to that observed in [34], where it was deduced that
the interface is of monoclinic(010)/orthorhombic(110) type
that moves in the direction of the monoclinic crystal after
annealing. However, if (ii) occurs this will lead to a change
of the fold-plane type from {110} to {100}, as indicated in
Fig. 9. Such reorientation has been observed in crystalline

lamellae parts of PE, where the fold planes change from {110}
to {100} following annealing [7,8,36]. These observations
indicate that both types of transitions between the monoclinic
and orthorhombic phase are possible.

V. SUMMARY AND CONCLUSIONS

In this work we have investigated the martensitic transfor-
mation in crystalline PE by means of first-principles atomistic
modeling based on DFT. The modeling is performed using
the recent consistent-exchange vdW-DF-cx version [39,40] of
the Chalmers-Rutgers vdW-DF method. Besides seeking an
accurate characterization of transformation energetics of the
martensitic transformation, we have also investigated phonon
characteristics of the monoclinic phase to gain insight into its
much debated phase stability.

The computed phonon data for the monoclinic phase shows
that it is not a completely stable phase. Two instances of
imaginary frequencies located at the � and X symmetry points
were observed, with modeshape displacements corresponding
to a mode where the chains undergo rotational movements.
However, if one of the transverse lattice parameters (b) is
subjected to compressive strains, the reduced H-H distance
between neighboring molecular chains causes regions of in-
creased electron density that through the Pauli principle give
rise to chain tilting. In this tilted state the molecular chains are
pinned by the repulsive forces emanating from neighboring
chains, causing the soft modes to disappear. This concurs
with experimental observations of the monoclinic phase being
exclusively observed in mechanically loaded specimens and
the occurrence of back transformation from the monoclinic to
the orthorhombic phase upon relaxation or annealing.

For the martensitic transformation, we have studied the
strain energy landscapes for two experimentally observed
transformation paths and the activation energy for chain shuf-
fling. The results reveal that the combined threshold energy
for these mechanisms are of the same order as kBT (in
the range from room temperature to 300 °C), which implies
that relaxation and thermally activated back transformation
between the two phases may occur, as experimentally observed
in the literature. Through combinations and reversals of the T1
and T2 mechanisms, we have proposed a transformation path
that could explain the experimentally observed reorientation
of lamellae fold planes from {110} to {100} type upon
annealing. Moreover, the low activation energy of the lattice
deformation and chain shuffling mechanisms are in accor-
dance with the experimentally observed back transformation
mechanism that corresponds to the gradual movement of
a monoclinic(010)/orthorhombic(110) interface towards the
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monoclinic part of the crystal until it is fully transformed to
orthorhombic.

Overall, the martensitic transformation and phase stability
of PE is found to reflect a subtle balance of forces [39,76]. We
have documented that strain energy barriers for the transfor-
mation and the difference in ground state energy between the
two phases are very low (a few meVs per polymer repeat unit).
These energy characteristics can be explained by interchain
vdW forces, which dictate the phase stability and strain energy.
At the same time, we have shown that a robust account of Pauli
exclusion is important to describe the instability and stability
of phonon modes and the chain shuffling activation energy that
reflect the nature of the monoclinic-to-orthorhombic transfor-
mation. Finally, in the stabilization of the monoclinic phase
(that arises with compressive strain) the PE chains reorganize
themselves to both maximize the vdW attraction and the

kinetic-energy repulsion that underpins the Pauli exclusion.
These findings demonstrate the importance of the inclusion of
vdW interaction in the present application.
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