32 research outputs found

    Bioluminescent System of Luminous Bacteria for Detection of Microbial Contamination

    Get PDF
    Microbial contamination is usually analyzed using luciferin-luciferase system of fireflies by the detection of adenosine-5’-triphosphate (ATP). There is an opportunity to assess the bacterial contamination of various objects based on a quantitative analysis of other nucleotides. In the present study, a bioluminescent enzyme system of luminous bacteria NADH:FMN-oxidoreductase (Red) and luciferase (BLuc) was investigated to understand if it can be used for quantitative measurements of bacterial cells by nicotinamide adenine dinucleotide (NADH) and flavin mononucleotide (FMN) detection. To increase the sensitivity of bioluminescent system to FMN and NADH, optimization of assay conditions was performed by varying enzymes and substrates concentrations. The lowest limits of detection were 1.2 nM FMN and 0.1 pM NADH. Escherichia coli cells were used as a model bacterial sample. FMN and NADH extraction was made by destructing cell membrane by ultrasonication. Cell suspension was added into the reaction mixture instead of FMN and NADH, and light intensity depended on number of bacterial cells in the reaction mixture. Centrifugation of sonicated sample as an additional step of sample preparation did not improve the sensitivity of method. The experimental results showed that Red and BLuc system could detect at least 800 thousand bacterial cells mL-1 by determining concentration of NADH extracted from lysed cells, while 3.9 million cells mL-1 can be detected by determining concentration of FM

    Анализ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ Ρ„Π°Π·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π°Π½Ρ‚Π΅Π½Π½ΠΎΠΉ Ρ€Π΅ΡˆΠ΅Ρ‚ΠΊΠΈ радиотСлСскопа Π“Π£Π Π’

    Get PDF
    ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° расчСта ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ числСнного Π°Π½Π°Π»ΠΈΠ·Π° ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ Ρ„Π°Π·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π°Π½Ρ‚Π΅Π½Π½ΠΎΠΉ Ρ€Π΅ΡˆΠ΅Ρ‚ΠΊΠΈ (АЀАР) Гигантского украинского радиотСлСскопа (Π“Π£Π Π’) Π΄Π΅ΠΊΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠ³ΠΎ ΠΈ ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ΠΎΠ² Π²ΠΎΠ»Π½, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ сооруТаСтся Π² настоящСС врСмя Π²Π±Π»ΠΈΠ·ΠΈ Π³. Π₯Π°Ρ€ΡŒΠΊΠΎΠ²Π° Π½Π° Ρ‚Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΡ€ΠΈΠΈ РадиоастрономичСской обсСрватории ΠΈΠΌ. Π‘. Π―. Π‘Ρ€Π°ΡƒΠ΄Π΅ РадиоастрономичСского института ΠΠ°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π°ΠΊΠ°Π΄Π΅ΠΌΠΈΠΈ Π½Π°ΡƒΠΊ Π£ΠΊΡ€Π°ΠΈΠ½Ρ‹. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° базируСтся Π½Π° ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΠΉ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ Π°Π½Ρ‚Π΅Π½Π½Ρ‹Ρ… Ρ€Π΅ΡˆΠ΅Ρ‚ΠΎΠΊ, ΡΠΎΡ‡Π΅Ρ‚Π°ΡŽΡ‰Π΅ΠΉ Π² сСбС элСктродинамичСский ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ Π°Π½Π°Π»ΠΈΠ·Ρƒ Ρ€Π΅ΡˆΠ΅Ρ‚ΠΊΠΈ ΠΈΠ·Π»ΡƒΡ‡Π°Ρ‚Π΅Π»Π΅ΠΉ с ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ многополюсников Π‘Π’Π§ для описания Ρ„ΠΈΠ΄Π΅Ρ€Π½ΠΎΠΉ схСмы АЀАР. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ ΠΈ ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ числСнного расчСта эффСктивной ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ АЀАР ΠΈ коэффициСнта ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π² случаС пассивной ЀАР ассоциируСтся с ΠšΠŸΠ”, Π² ΡˆΠΈΡ€ΠΎΠΊΠΎΠΌ сСкторС сканирования Π»ΡƒΡ‡Π° Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ частот 10- 80 ΠœΠ“Ρ†.ΠΠ°Π΄Π°ΡŽΡ‚ΡŒΡΡ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΡƒ Ρ‚Π° Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ числового Π°Π½Π°Π»Ρ–Π·Ρƒ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡ— Ρ„Π°Π·ΠΎΠ²Π°Π½ΠΎΡ— Π°Π½Ρ‚Π΅Π½Π½ΠΎΡ— Ρ€Π΅ΡˆΡ–Ρ‚ΠΊΠΈ (АЀАР) Π“Ρ–Π³Π°Π½Ρ‚ΡΡŒΠΊΠΎΠ³ΠΎ ΡƒΠΊΡ€Π°Ρ—Π½ΡΡŒΠΊΠΎΠ³ΠΎ радіотСлСскопу (Π“Π£Π Π’) Π΄Π΅ΠΊΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Ρ‚Π° ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π΄Ρ–Π°ΠΏΠ°Π·ΠΎΠ½Ρ–Π² Ρ…Π²ΠΈΠ»ΡŒ, Ρ‰ΠΎ Π½Π°Ρ€Π°Π·Ρ– ΡΠΏΠΎΡ€ΡƒΠ΄ΠΆΡƒΡ”Ρ‚ΡŒΡΡ ΠΏΠΎΠ±Π»ΠΈΠ·Ρƒ ΠΌ. Π₯Π°Ρ€ΠΊΠΎΠ²Π° Π½Π° Ρ‚Π΅Ρ€ΠΈΡ‚ΠΎΡ€Ρ–Ρ— Радіоастрономічної обсСрваторії Ρ–ΠΌ. Π‘. Π―. Π‘Ρ€Π°ΡƒΠ΄Π΅ Радіоастрономічного інституту ΠΠ°Ρ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡ— Π°ΠΊΠ°Π΄Π΅ΠΌΡ–Ρ— Π½Π°ΡƒΠΊ Π£ΠΊΡ€Π°Ρ—Π½ΠΈ. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° Π±Π°Π·ΡƒΡ”Ρ‚ΡŒΡΡ Π½Π° ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½Ρ–ΠΉ Ρ‚Π΅ΠΎΡ€Ρ–Ρ— Π°Π½Ρ‚Π΅Π½Π½ΠΈΡ… Ρ€Π΅ΡˆΡ–Ρ‚ΠΎΠΊ, Ρ‰ΠΎ ΠΏΠΎΡ”Π΄Π½ΡƒΡ” Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½ΠΈΠΉ ΠΏΡ–Π΄Ρ…Ρ–Π΄ Π΄ΠΎ Π°Π½Π°Π»Ρ–Π·Ρƒ Ρ€Π΅ΡˆΡ–Ρ‚ΠΊΠΈ Π²ΠΈΠΏΡ€ΠΎΠΌΡ–Π½ΡŽΠ²Π°Ρ‡Ρ–Π² Π· ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ Ρ‚Π΅ΠΎΡ€Ρ–Ρ— Π±Π°Π³Π°Ρ‚ΠΎΠΏΠΎΠ»ΡŽΡΠ½ΠΈΠΊΡ–Π² НВЧ для опису Ρ„Ρ–Π΄Π΅Ρ€Π½ΠΎΡ— схСми АЀАР. НавСдСні Ρ‚Π° ΠΏΡ€ΠΎΠ°Π½Π°Π»Ρ–Π·ΠΎΠ²Π°Π½Ρ– Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ числового Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΡƒ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡ— ΠΏΠ»ΠΎΡ‰Ρ– АЀАР Ρ‚Π° ΠΊΠΎΠ΅Ρ„Ρ–Ρ†Ρ–Ρ”Π½Ρ‚Ρƒ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Ρ–, Ρ‰ΠΎ Π² Ρ€Π°Π·Ρ– пасивної ЀАР Π°ΡΠΎΡ†Ρ–ΡŽΡ”Ρ‚ΡŒΡΡ Π· ΠšΠšΠ”, Ρƒ ΡˆΠΈΡ€ΠΎΠΊΠΎΠΌΡƒ сСкторі сканування промСня Π² Π΄Ρ–Π°ΠΏΠ°Π·ΠΎΠ½Ρ– частот 10 - 80 ΠœΠ“Ρ†.The calculation technique results of numerical analysis of parameters of active phased antenna array (APAA) of the Giant Ukrainian Radio Telescope (GURT) of decameter and meter wavelengths which is being built now nearby Kharkiv at the area of S. Ya. Braude Radio Astronomy Observatory of the Institute of Radio Astronomy of the National Academy of Sciences of Ukraine are presented. The technique is based on the matrix theory of antenna arrays which combines an electromagnetic approach to analysis of radiators array with the methods of microwave multiport theory for the APAA feed network description. The results of numerical calculation of the APAA effective area and its gain, which in case of passive array is associated with its efficiency, are given and analyzed for a wide scan range within 10 to 80 MHz

    Immobilization of Firefly Bioluminescent System: Development and Application of Reagents

    No full text
    The present study describes the method of preparing reagents containing firefly luciferase (FLuc) and its substrate, D-luciferin, immobilized into gelatin gel separately or together. The addition of stabilizers dithiothreitol (DTT) and bovine serum albumin (BSA) to the reagent is a factor in achieving higher activity of reagents and their stability during storage. The use of immobilized reagents substantially simplifies the procedure of assay for microbial contamination. The mechanism of action of the reagents is based on the relationship between the intensity of the bioluminescent signal and the level of ATP contained in the solution of the lysed bacterial cells. The highest sensitivity to ATP is achieved by using immobilized FLuc or reagents containing separately immobilized FLuc and D-luciferase. The limit of detection of ATP by the developed reagents is 0.3 pM, which corresponds to 20,000 cellsΒ·mLβˆ’1. The linear response range is between 0.3 pM and 3 nM ATP. The multicomponent reagent, containing co-immobilized FLuc and D-luciferin, shows insignificantly lower sensitivity to ATPβ€”0.6 pM. Moreover, the proposed method of producing an immobilized firefly luciferin-luciferase system holds considerable promise for the development of bioluminescent biosensors intended for the analysis of microbial contamination

    Π‘ΠΈΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½Ρ‹ΠΉ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΉ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Π½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· наночастиц Π½Π° основС ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ²

    Get PDF
    The bioluminescent enzymatic bioassays for assessment of nanomaterial biotoxicity using the soluble or immobilized coupled enzyme system of luminous bacteria NAD(P)Н:FMN-oxidoreductase + luciferase (Red + Luc) as a test system were employed in this study. This method specifically detects the toxic properties of substances based on their effect on the parameters of the bioluminescent enzyme reactions. The commercially available metal nanoparticles (MNPs), including silver nanoparticles (Ag), nanoparticles of silicon dioxide (SiO2), and titanium dioxide (TiO2), of different sizes were tested in the study. The inhibitory effects of MNPs on the bioluminescent Red + Luc enzyme system were measured. Results indicated that the soluble Red + Luc coupled enzyme system was more sensitive to the inhibition effect of MNPs than its immobilized form. The inhibitory activity of MNPs decreased in the following order: Ag > TiO2 > SiO2. That correlated well with results of other biological methods. Due to substantial advantages such as technical simplicity, short response time and high sensitivity to analysis, this bioluminescent enzymatic bioassay has the potential to be developed as a general bioassay for safety assessment of a wide variety of nanomaterialsΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΎΡ†Π΅Π½ΠΊΠΈ биотоксичности Π½Π°Π½ΠΎΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ², основанный Π½Π° использовании Π² качСствС ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° воздСйствия растворимой ΠΈ ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π±ΠΈΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½ΠΎΠΉ Π±ΠΈΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½ΠΎΠΉ систСмы: НАД(Π€)·Н:ЀМН-оксидорСдуктаза ΠΈ Π»ΡŽΡ†ΠΈΡ„Π΅Ρ€Π°Π·Π°. ΠŸΡ€ΠΈΠ½Ρ†ΠΈΠΏ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° состоит Π² ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΈΠΈ токсичСских свойств тСстируСмых вСщСств ΠΏΠΎ ΠΈΡ… влиянию Π½Π° ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π±ΠΈΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΠΎΠΉ Π±ΠΈΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½ΠΎΠΉ систСмы. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ тСстированиС коммСрчСски доступных наночастиц Π½Π° основС ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² (МНЧ), Π² Ρ‚ΠΎΠΌ числС наночастиц сСрСбра (Ag), ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΡ…ΡΡ ΠΏΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρƒ наночастиц диоксидов крСмния (SiO2) ΠΈ Ρ‚ΠΈΡ‚Π°Π½Π° (TiO2). Π­Ρ‚ΠΈ МНЧ ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ эффСкт Π½Π° Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π±ΠΈΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½ΠΎΠΉ систСмы, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ растворимыС Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹ Π² большСй стСпСни ΠΏΠΎΠ΄Π²Π΅Ρ€ΠΆΠ΅Π½Ρ‹ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΌΡƒ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡŽ МНЧ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ. Π‘Ρ‚Π΅ΠΏΠ΅Π½ΡŒ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ воздСйствия ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ Π² ряду Ag > TiO2 > SiO2, Ρ‡Ρ‚ΠΎ согласуСтся с Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… биологичСских ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ². Π‘ΠΈΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½Ρ‹ΠΉ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π°Π½Π°Π»ΠΈΠ·Π° Π·Π°Π½ΠΈΠΌΠ°Π΅Ρ‚ 2-3 ΠΌΠΈΠ½, отличаСтся высокой Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ, тСхничСской простотой ΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ для ΠΎΡ†Π΅Π½ΠΊΠΈ бСзопасности Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… классов Π½Π°Π½ΠΎΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎ

    Alternative Enzyme Inhibition Assay for Safety Evaluation of Food Preservatives

    No full text
    While food additives are widely used in the modern food industry and generally are important in maintaining the ability to provide food for the increasing world population, the progress occurring in this field is much ahead of the evaluation of their possible consequences for human health. The present study suggests a set of single- and multi-enzyme assay systems for revealing toxic effects of the most widely spread food preservatives, such as sorbic acid (E200), potassium sorbate (E202), and sodium benzoate (E211) at the primary molecular level of their interaction with enzymes. The assay is based on the inhibition of enzyme activity by toxic substances proportional to the amount of the toxicants in the sample. The single-enzyme assay system based on NAD(P)H:FMN oxidoreductase (Red) proved to be most sensitive to the impact of food additives, with the IC50 values being 29, 14, and 0.02 mg/L for sodium benzoate, potassium sorbate, and sorbic acid, respectively, which is considerably lower than their acceptable daily intake (ADI). No reliable change in the degree of inhibition of the enzyme assay systems by food preservatives was observed upon elongating the series of coupled redox reactions. However, the inhibition of activity of the multi-enzyme systems by 50% was found at a preservative concentration below the maximum permissible level for food. The inhibition effect of food preservatives on the activity of butyrylcholinesterase (BChE), lactate dehydrogenase (LDH), and alcohol dehydrogenase (ADH) was either absent or found in the presence of food preservatives at concentrations significantly exceeding their ADI. Among the preservatives under study, sodium benzoate is considered to be the safest in terms of the inhibiting effect on the enzyme activity. The results show that the negative effect of the food preservatives at the molecular level of organization of living things is highly pronounced, while at the organismal level it may not be obvious

    Role of Hsp90 and ATP in modulating apyrase activity and firefly luciferase kinetic

    No full text
    ВСкст ΡΡ‚Π°Ρ‚ΡŒΠΈ Π½Π΅ публикуСтся Π² ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΌ доступС Π² соотвСтствии с ΠΏΠΎΠ»ΠΈΡ‚ΠΈΠΊΠΎΠΉ ΠΆΡƒΡ€Π½Π°Π»Π°.The present manuscript describes a novel bioassay consisting of apyrase and heat shock protein 90 (Hsp90) without additional co-chaperone supplementation; intended for high-throughput screening of anti-cancer drugs and prognosis of stress. In this regard, Hsp90 and adenosine 5'-triphosphate (ATP) mediated firefly luciferase (FLuc) kinetics was investigated using apyrase and FLuc as client proteins. Bioluminescent assay containing Hsp90, ATP, and apyrase led to complete loss of luminescence at 50ΒΊC which indicates the protective role of Hsp90 against thermal denaturation. Similarly, the assay sample comprising Hsp90, ATP, and FLuc showed 2 fold increments in luminescence than their counterparts. Introduction of bovine serum albumin (BSA) to the pre-incubated assay mixture led to an initial rise in the luminescence (28 %) in comparison to the sample containing Hsp90, ATP and FLuc. Therefore, FLuc based HTS assays are not suitable for clinical samples which may contain stabilizing agents. However, thermally denatured FLuc and apyrase could not regain their active conformation even when Hsp90 and ATP were introduced in the assay system. This observation justifies the role of Hsp90 to be protective rather than a reparation agent when acts without co-chaperones

    A Multicomponent Butyrylcholinesterase Preparation for Enzyme Inhibition-Based Assay of Organophosphorus Pesticides

    No full text
    A new method of producing butyrylcholinesterase (BChE) preparations, stable in storage and use, has been proposed. The BChE preparation is the enzyme co-immobilized with 0.2 M 5-5′-dithiobis (2-nitrobenzoic acid) in starch or gelatin gel. All experimental preparations retain enzyme activity for at least 300 d. The preparations based on gelatin gel show higher activity but lower sensitivity to the toxicants tested in this study compared to the starch gel-based preparations. A method has been proposed for integrated detection of anti-cholinesterase substances in aqueous solutions using the experimental preparation with immobilized BChE. After the additional incubation of the preparation with the immobilized enzyme in the solution of the analyte, the detection limits of malathion and pirimiphos-methyl determined using the IC20 values were below their maximum allowable concentrations—0.005 µM and 0.03 µM, respectively
    corecore