158 research outputs found

    Staring Death in the Face: The Financial Impact of Corporate Exposure to Prior Disasters

    Get PDF

    Multi-level fast multipole BEM for 3-D elastodynamics

    No full text
    To reduce computational complexity and memory requirement for 3-D elastodynamics using the boundary element method (BEM), a multi-level fast multipole BEM (FM-BEM) based on the diagonal form for the expansion of the elastodynamic fundamental solution is proposed and demonstrated on numerical examples involving single-region and multi-region configurations where the scattering of seismic waves by a topographical irregularity or a sediment-filled basin is examined

    Norwegian mastitis control programme

    Get PDF
    This paper describes the methods and results of the Norwegian Mastitis Control Program implemented in 1982. The program has formed an integral part of the Norwegian Cattle Health Services (NCHS) since 1995. The NCHS also have specific programs for milk fever, ketosis, reproduction and calf diseases. The goal of the program is to improve udder health by keeping the bulk milk somatic cell count (BMSCC) low, to reduce the use of antibiotics, to keep the cost of mastitis low at herd level and improve the consumers' attitude to milk products. In 1996, a decision was made to reduce the use of antibiotics in all animal production enterprises in Norway by 25% within five years. Relevant data has been collected through the Norwegian Cattle Herd Recording System (NCHRS); including health records since 1975 and somatic cell count (SCC) data since 1980. These data have been integrated within the NCHRS. Since 2000, mastitis laboratory data have also been included in the NCHRS. Data on clinical disease, SCC and mastitis bacteriology have been presented to farmers and advisors in monthly health periodicals since 1996, and on the internet since 2005. In 1996, Norwegian recommendations on the treatment of mastitis were implemented. Optimal milking protocols and milking machine function have been emphasised and less emphasis has been placed on dry cow therapy. A selective dry cow therapy program (SDCTP) was implemented in 2006, and is still being implemented in new areas. Research demonstrates that the rate of clinical mastitis could be reduced by 15% after implementing SDCTP. The results so far show a 60% reduction in the clinical treatment of mastitis between 1994 and 2007, a reduction in BMSCC from 250,000 cells/ml to 114,000 cells/ml, and a total reduction in the mastitis cost from 0.23 NOK to 0.13 NOK per litre of milk delivered to the processors, corresponding to a fall from 9.2% to 1.7% of the milk price, respectively. This reduction is attributed to changes in attitude and breeding, eradicating bovine virus diarrhoea virus (BVDV) and a better implementation of mastitis prevention programmes

    Modeling of Ti-W Solidification Microstructures Under Additive Manufacturing Conditions

    Get PDF
    Additive manufacturing (AM) processes have many benefits for the fabrication of alloy parts, including the potential for greater microstructural control and targeted properties than traditional metallurgy processes. To accelerate utilization of this process to produce such parts, an effective computational modeling approach to identify the relationships between material and process parameters, microstructure, and part properties is essential. Development of such a model requires accounting for the many factors in play during this process, including laser absorption, material addition and melting, fluid flow, various modes of heat transport, and solidification. In this paper, we start with a more modest goal, to create a multiscale model for a specific AM process, Laser Engineered Net Shaping (LENS™), which couples a continuum-level description of a simplified beam melting problem (coupling heat absorption, heat transport, and fluid flow) with a Lattice Boltzmann-cellular automata (LB-CA) microscale model of combined fluid flow, solute transport, and solidification. We apply this model to a binary Ti-5.5 wt pct W alloy and compare calculated quantities, such as dendrite arm spacing, with experimental results reported in a companion paper

    Temporal and tissue-specific variability of SMN protein levels in mouse models of spinal muscular atrophy

    Get PDF
    textabstractSpinal muscular atrophy (SMA) is a progressive motor neuron disease caused by deleterious variants in SMN1 that lead to a marked decrease in survival motor neuron (SMN) protein expression. Humans have a second SMN gene (SMN2) that is almost identical to SMN1. However, due to alternative splicing the majority of SMN2 messenger ribonucleic acid (mRNA) is translated into a truncated, unstable protein that is quickly degraded. Because the presence of SMN2 provides a unique opportunity for therapy development in SMA patients, the mechanisms that regulate SMN2 splicing and mRNA expression have been elucidated in great detail. In contrast, how much SMN protein is produced at different developmental time points and in different tissues remains under-characterized. In this study, we addressed this issue by determining SMN protein expression levels at three developmental time points across six different mouse tissues and in two distinct mouse models of SMA ('severe' Taiwanese and 'intermediate' Smn2B/mice). We found that, in healthy control mice, SMN protein expression was significantly influenced by both age and tissue type.When comparing mouse models of SMA, we found that, despite being transcribed from genetically different alleles, control SMN levels were relatively similar. In contrast, the degree of SMN depletion between tissues in SMA varied substantially over time and between the two models. These findings offer an explanation for the differential vulnerability of tissues and organs observed in SMA and further our understanding of the systemic and temporal requirements for SMN with direct relevance for developing effective therapies for SMA

    A parallel cellular automata Lattice Boltzmann Method for convection-driven solidification

    Get PDF
    This article presents a novel coupling of numerical techniques that enable three-dimensional convection-driven microstructure simulations to be con- ducted on practical time scales appropriate for small-size components or experiments. On the microstructure side, the cellular automata method is efficient for relatively large-scale simulations, while the lattice Boltzmann method provides one of the fastest transient computational fluid dynamics solvers. Both of these methods have been parallelized and coupled in a single code, allowing resolution of large-scale convection-driven solidification problems. The numerical model is validated against benchmark cases, extended to capture solute plumes in directional solidification and finally used to model alloy solidification of an entire differentially heated cavity capturing both microstructural and meso-/macroscale phenomena
    corecore