16 research outputs found

    The cumulative effects of seven days of imposed exercise on energy balance and appetite regulation

    Get PDF
    A thesis submitted to the University of Bedfordshire, in fulfilment of the requirements for the degree of MSc by ResearchIncreasing energy expenditure (EE) through regular exercise is a promising strategy to prevent body fat gain. However, imposed exercise interventions often produce weight loss that is less than theoretically expected, possibility due to compensatory mechanisms in energy intake (EI) and EE. Study one was designed to determine whether a combined written and photographic food diary was a reliable measure of EI within a free-living environment across seven days. The results suggested this method was reliable at the group level. However, 95% limits of agreement (LoA) showed large variability (-1258 to 1545 kcal/day) at the individual level. Study two investigated acylated ghrelin, PYY and energy balance in response to 7-days of imposed exercise and a control condition. EI increased by 511 kcal/day in the exercise condition (P=0.005). Late-postprandial acylated ghrelin concentrations were higher in the exercise condition (P=0.072), but did not change from pre- to post intervention. There was a larger, but non-significant, increase in EI at the postprandial ad libitum pasta meal in the exercise condition (P=0.285). In conclusion, 7-days exercise resulted in increased EI under free-living conditions; similar results were found when assessed in a controlled laboratory environment. A larger sample size would allow confirmation of the findings

    Long-haul northeast travel disrupts sleep and induces perceived fatigue in endurance athletes

    Get PDF
    Introduction: Long-haul transmeridian travel is known to cause disruptions to sleep and immune status, which may increase the risk of illness. Aim: This study aimed to determine the effects of long-haul northeast travel for competition on sleep, illness and preparedness in endurance athletes. Methods: Twelve trained (13.8 ± 3.2 training h/week) masters (age: 48 ± 14 years) triathletes were monitored for sleep (quantity via actigraphy and quality via self-report), mucosal immunity (salivary immunoglobulin-A) and stress (salivary cortisol) as well as self-reported illness, fatigue, recovery and preparedness. Baseline measures were recorded for 2 weeks prior to travel for all variables except for the saliva samples, which were collected on three separate days upon waking. Participants completed normal training during the baseline period. Measures were subsequently recorded before, during and after long-haul northeast travel from the Australian winter to the Hawaiian summer, and in the lead up to an Ironman 70.3 triathlon. Results: All comparisons are to baseline. There was a most likely decrease in sleep duration on the over-night flight (-4.8 ± 1.2 h; effect size; ±90% confidence limits = 3.06; ±1.26) and a very likely increase in sleep duration on the first night after arrival (0.7 ± 1.0 h; 1.15; ±0.92). After this time, sleep duration returned to baseline for several days until it was very likely decreased on the night prior to competition (-1.2 ± 1.0 h; 1.18; ±0.93). Nap duration was likely increased on the first day after arrival (36 ± 65 min; 3.90; ±3.70). There was also a likely increase in self-reported fatigue upon waking after the first night in the new destination (1.1 ± 1.6 AU; 0.54; ±0.41) and there were three athletes (25%) who developed symptoms of illness 3-5 days after arrival. There were no changes in sleep quality or mucosal measures across study. Discussion: Long-haul northeast travel from a cool to a hot environment had substantial influences on sleep and self-reported fatigue, but these alterations had returned to pre-departure baseline 48 h after arrival. Endurance athletes undertaking similar journeys may benefit from optimizing sleep hygiene, especially on the first 2 days after arrival, or until sleep duration and fatigue levels return to normal

    Pharmacological hypotheses: Is acetaminophen selective in its cyclooxygenase inhibition?

    Get PDF
    The precise mechanistic action of acetaminophen (ACT; paracetamol) remains debated. ACT’s analgesic and antipyretic actions are attributed to cyclooxygenase (COX) inhibition preventing prostaglandin (PG) synthesis. Two COX isoforms (COX1/2) share 60% sequence structure, yet their functions vary. COX variants have been sequenced among various mammalian species including humans. A COX1 splice variant (often termed COX3) is purported by some as the elusive target of ACT’s mechanism of action. Yet a physiologically functional COX3 isoform has not been sequenced in humans, refuting these claims. ACT may selectively inhibit COX2, with evidence of a 4.4‐fold greater COX2 inhibition than COX1. However, this is markedly lower than other available selective COX2 inhibitors (up to 433‐fold) and tempered by proof of potent COX1 inhibition within intact cells when peroxide tone is low. COX isoform inhibition by ACT may depend on subtle in vivo physiological variations specific to ACT. In vivo ACT efficacy is reliant on intact cells and low peroxide tone while the arachidonic acid concentration state can dictate the COX isoform preferred for PG synthesis. ACT is an effective antipyretic (COX2 preference for PG synthesis) and can reduce afebrile core temperature (likely COX1 preference for PG synthesis). Thus, we suggest with specificity to human in vivo physiology that ACT: (i) does not act on a third COX isoform; (ii) is not selective in its COX inhibition; and (iii) inhibition of COX isoforms are determined by subtle and nuanced physiological variations. Robust research designs are required in humans to objectively confirm these hypotheses

    Long-Haul Northeast Travel Disrupts Sleep and Induces Perceived Fatigue in Endurance Athletes

    Get PDF
    Introduction: Long-haul transmeridian travel is known to cause disruptions to sleep and immune status, which may increase the risk of illness.Aim: This study aimed to determine the effects of long-haul northeast travel for competition on sleep, illness and preparedness in endurance athletes.Methods: Twelve trained (13.8 ± 3.2 training h/week) masters (age: 48 ± 14 years) triathletes were monitored for sleep (quantity via actigraphy and quality via self-report), mucosal immunity (salivary immunoglobulin-A) and stress (salivary cortisol) as well as self-reported illness, fatigue, recovery and preparedness. Baseline measures were recorded for 2 weeks prior to travel for all variables except for the saliva samples, which were collected on three separate days upon waking. Participants completed normal training during the baseline period. Measures were subsequently recorded before, during and after long-haul northeast travel from the Australian winter to the Hawaiian summer, and in the lead up to an Ironman 70.3 triathlon.Results: All comparisons are to baseline. There was a most likely decrease in sleep duration on the over-night flight (-4.8 ± 1.2 h; effect size; ±90% confidence limits = 3.06; ±1.26) and a very likely increase in sleep duration on the first night after arrival (0.7 ± 1.0 h; 1.15; ±0.92). After this time, sleep duration returned to baseline for several days until it was very likely decreased on the night prior to competition (-1.2 ± 1.0 h; 1.18; ±0.93). Nap duration was likely increased on the first day after arrival (36 ± 65 min; 3.90; ±3.70). There was also a likely increase in self-reported fatigue upon waking after the first night in the new destination (1.1 ± 1.6 AU; 0.54; ±0.41) and there were three athletes (25%) who developed symptoms of illness 3–5 days after arrival. There were no changes in sleep quality or mucosal measures across study.Discussion: Long-haul northeast travel from a cool to a hot environment had substantial influences on sleep and self-reported fatigue, but these alterations had returned to pre-departure baseline 48 h after arrival. Endurance athletes undertaking similar journeys may benefit from optimizing sleep hygiene, especially on the first 2 days after arrival, or until sleep duration and fatigue levels return to normal

    Hmong Adults Self-Rated Oral Health: A Pilot Study

    Get PDF
    Since 1975, the Hmong refugee population in the U.S. has increased over 200%. However, little is known about their dental needs or self-rated oral health (SROH). The study aims were to: (1) describe the SROH, self-rated general health (SRGH), and use of dental/physician services; and (2) identify the factors associated with SROH among Hmong adults. A cross-sectional study design with locating sampling methodology was used. Oral health questionnaire was administered to assess SROH and SRGH, past dental and physician visits, and language preference. One hundred twenty adults aged 18–50+ were recruited and 118 had useable information. Of these, 49% rated their oral health as poor/fair and 30% rated their general health as poor/fair. Thirty-nine percent reported that they did not have a regular source of dental care, 46% rated their access to dental care as poor/fair, 43% visited a dentist and 66% visited a physician within the past 12 months. Bivariate analyses demonstrated that access to dental care, past dental visits, age and SRGH were significantly associated with SROH (P \u3c 0.05). Multivariate analyses demonstrated a strong association between access to dental care and good/excellent SROH. About half of Hmong adults rated their oral health and access to dental care as poor. Dental insurance, access to dental care, past preventive dental/physician visits and SRGH were associated with SROH

    Long-Haul Northeast Travel Disrupts Sleep and Induces Perceived Fatigue in Endurance Athletes

    Get PDF
    Introduction: Long-haul transmeridian travel is known to cause disruptions to sleep and immune status, which may increase the risk of illness. Aim: This study aimed to determine the effects of long-haul northeast travel for competition on sleep, illness and preparedness in endurance athletes. Methods: Twelve trained (13.8 ± 3.2 training h/week) masters (age: 48 ± 14 years) triathletes were monitored for sleep (quantity via actigraphy and quality via self-report), mucosal immunity (salivary immunoglobulin-A) and stress (salivary cortisol) as well as self-reported illness, fatigue, recovery and preparedness. Baseline measures were recorded for 2 weeks prior to travel for all variables except for the saliva samples, which were collected on three separate days upon waking. Participants completed normal training during the baseline period. Measures were subsequently recorded before, during and after long-haul northeast travel from the Australian winter to the Hawaiian summer, and in the lead up to an Ironman 70.3 triathlon. Results: All comparisons are to baseline. There was a most likely decrease in sleep duration on the over-night flight (-4.8 ± 1.2 h; effect size; ±90% confidence limits = 3.06; ±1.26) and a very likely increase in sleep duration on the first night after arrival (0.7 ± 1.0 h; 1.15; ±0.92). After this time, sleep duration returned to baseline for several days until it was very likely decreased on the night prior to competition (-1.2 ± 1.0 h; 1.18; ±0.93). Nap duration was likely increased on the first day after arrival (36 ± 65 min; 3.90; ±3.70). There was also a likely increase in self-reported fatigue upon waking after the first night in the new destination (1.1 ± 1.6 AU; 0.54; ±0.41) and there were three athletes (25%) who developed symptoms of illness 3-5 days after arrival. There were no changes in sleep quality or mucosal measures across study. Discussion: Long-haul northeast travel from a cool to a hot environment had substantial influences on sleep and self-reported fatigue, but these alterations had returned to pre-departure baseline 48 h after arrival. Endurance athletes undertaking similar journeys may benefit from optimizing sleep hygiene, especially on the first 2 days after arrival, or until sleep duration and fatigue levels return to normal

    Pharmacological hypotheses: Is acetaminophen selective in its cyclooxygenase inhibition?

    No full text
    The precise mechanistic action of acetaminophen (ACT; paracetamol) remains debated. ACT’s analgesic and antipyretic actions are attributed to cyclooxygenase (COX) inhibition preventing prostaglandin (PG) synthesis. Two COX isoforms (COX1/2) share 60% sequence structure, yet their functions vary. COX variants have been sequenced among various mammalian species including humans. A COX1 splice variant (often termed COX3) is purported by some as the elusive target of ACT’s mechanism of action. Yet a physiologically functional COX3 isoform has not been sequenced in humans, refuting these claims. ACT may selectively inhibit COX2, with evidence of a 4.4-fold greater COX2 inhibition than COX1. However, this is markedly lower than other available selective COX2 inhibitors (up to 433-fold) and tempered by proof of potent COX1 inhibition within intact cells when peroxide tone is low. COX isoform inhibition by ACT may depend on subtle in vivo physiological variations specific to ACT. In vivo ACT efficacy is reliant on intact cells and low peroxide tone while the arachidonic acid concentration state can dictate the COX isoform preferred for PG synthesis. ACT is an effective antipyretic (COX2 preference for PG synthesis) and can reduce afebrile core temperature (likely COX1 preference for PG synthesis). Thus, we suggest with specificity to human in vivo physiology that ACT: (i) does not act on a third COX isoform; (ii) is not selective in its COX inhibition; and (iii) inhibition of COX isoforms are determined by subtle and nuanced physiological variations. Robust research designs are required in humans to objectively confirm these hypotheses

    Heat Adaptation and Nutrition Practices:Athlete and Practitioner Knowledge and Use

    No full text
    Purpose: To survey elite athletes and practitioners to identify (1) knowledge and application of heat acclimation/acclimatization (HA) interventions, (2) barriers to HA application, and (3) nutritional practices supporting HA. Methods: Elite athletes (n = 55) and practitioners (n = 99) completed an online survey. Mann–Whitney U tests (effect size [ES; r]) assessed differences between ROLE (athletes vs practitioners) and CLIMATE (hot vs temperate). Logistic regression and Pearson chi-square (ES Phi [ϕ]) assessed relationships. Results: Practitioners were more likely to report measuring athletes’ core temperature (training: practitioners 40% [athletes 15%]; P = .001, odds ratio = 4.0, 95% CI, 2%–9%; competition: practitioners 25% [athletes 9%]; P = .020, odds ratio = 3.4, 95% CI, 1%–10%). Practitioners (55% [15% athletes]) were more likely to perceive rectal as the gold standard core temperature measurement site (P = .013, ϕ = .49, medium ES). Temperate (57% [22% hot]) CLIMATE dwellers ranked active HA effectiveness higher (P &lt; .001, r = .30, medium ES). Practitioners commonly identified athletes’ preference (48%), accessibility, and cost (both 47%) as barriers to HA. Increasing carbohydrate intake when training in the heat was more likely recommended by practitioners (49%) than adopted by athletes (26%; P = .006, 95% CI, 0.1%–1%). Practitioners (56% [28% athletes]) were more likely to plan athletes’ daily fluid strategies, adopting a preplanned approach (P = .001; 95% CI, 0.1%–1%). Conclusions: Practitioners, and to a greater extent athletes, lacked self-reported key HA knowledge (eg, core temperature assessment/monitoring methods) yet demonstrated comparatively more appropriate nutritional practices (eg, hydration).</jats:p

    Heat Preparation and Knowledge at the World Athletics Race Walking Team Championships Muscat 2022

    Get PDF
    Purpose: To assess elite racewalkers’ preparation strategies, knowledge, and general practices for competition in the heat and their health status during the World Athletics Race Walking Teams Championships (WRW) Muscat 2022. Methods: Sixty-six elite racewalkers (male: n = 42; mean age = 25.8 y) completed an online survey prior to WRW Muscat 2022. Athletes were grouped by sex (males vs females) and climate (self-reported) they live/trained in (hot vs temperate/cold), with differences/ relationships between groups assessed. Relationships between ranking (medalist/top 10 vs nonmedalist/nontop 10) and precompetition use of heat acclimation/acclimatization (HA) were assessed. Results: All surveyed medalists (n = 4) implemented, and top 10 finishers were more likely to report using (P = .049; OR = 0.25; 95% CI, 0.06%–1%), HA before the championships. Forty-three percent of athletes did not complete specific HA training. Females (8% [males 31%]) were less likely to have measured core temperature (P = .049; OR = 0.2; 95% CI, 0.041–0.99) and more likely to not know expected conditions in Muscat (42% vs 14%; P = .016; OR = 4.3; 95% CI, 1%–14%) or what wet bulb globe temperature is (83% vs 55%; P = .024; OR = 4.1; 95% CI, 1%–14%). Conclusions: Athletes who implemented HA before the championships tended to place better than those who did not. Forty-three percent of athletes did not prepare for the expected hot conditions at the WRW Muscat 2022, primarily attributed to challenges in accessing and/or cost of equipment/facilities for HA strategies. Further efforts to bridge the gap between research and practice in this elite sport are needed, particularly in female athletes
    corecore