1,977 research outputs found

    Macroscopic Noisy Bounded Confidence Models with Distributed Radical Opinions

    Get PDF
    In this article, we study the nonlinear Fokker-Planck (FP) equation that arises as a mean-field (macroscopic) approximation of bounded confidence opinion dynamics, where opinions are influenced by environmental noises and opinions of radicals (stubborn individuals). The distribution of radical opinions serves as an infinite-dimensional exogenous input to the FP equation, visibly influencing the steady opinion profile. We establish mathematical properties of the FP equation. In particular, we (i) show the well-posedness of the dynamic equation, (ii) provide existence result accompanied by a quantitative global estimate for the corresponding stationary solution, and (iii) establish an explicit lower bound on the noise level that guarantees exponential convergence of the dynamics to stationary state. Combining the results in (ii) and (iii) readily yields the input-output stability of the system for sufficiently large noises. Next, using Fourier analysis, the structure of opinion clusters under the uniform initial distribution is examined. Specifically, two numerical schemes for identification of order-disorder transition and characterization of initial clustering behavior are provided. The results of analysis are validated through several numerical simulations of the continuum-agent model (partial differential equation) and the corresponding discrete-agent model (interacting stochastic differential equations) for a particular distribution of radicals

    3D Simulation of the Effects of Surface Defects on Field Emitted Electrons

    Get PDF
    The ev­er-grow­ing de­mand for high­er beam en­er­gies has dra­mat­i­cal­ly in­creased the risk of RF break­down, lim­it­ing the max­i­mum achiev­able ac­cel­er­at­ing gra­di­ent. Field emis­sion is the most fre­quent­ly en­coun­tered RF break­down where it oc­curs at re­gions of lo­cal­ly en­hanced elec­tric field. Elec­trons ac­cel­er­at­ed across the cav­i­ty as they tun­nel through the sur­face in the pres­ence of mi­cro­scop­ic de­fects. Upon Im­pact, most of the ki­net­ic en­er­gy is con­vert­ed into heat and stress. This can in­flict ir­re­versible dam­age to the sur­face, cre­at­ing ad­di­tion­al field emis­sion sites. This work aims to in­ves­ti­gate, through sim­u­la­tion, the physics in­volved dur­ing both emis­sion and im­pact of elec­trons. A newly de­vel­oped 3D field model of an 805 MHz cav­i­ty is gen­er­at­ed by COM­SOL Mul­ti­physics. Elec­tron track­ing is per­formed using a Mat­lab based code, cal­cu­lat­ing the rel­e­vant pa­ram­e­ters need­ed by em­ploy­ing fourth Order Runge Kutta in­te­gra­tion. By study­ing such be­haviours in 3D, it is pos­si­ble to iden­ti­fy how the cav­i­ty sur­face can alter the local RF field and lead to break­down and sub­se­quent dam­ages. The ul­ti­mate aim is to in­tro­duce new sur­face stan­dards to en­sure bet­ter cav­i­ty per­for­mance

    THE EFFECTS OF FIELD EMITTED ELECTRONS ON RF SURFACE

    Get PDF
    The ever-growing demand for higher RF gradients has considerably increased the risk of breakdown in accelerating structures. Field emission is the most common form of RF breakdown that generates free electrons capable of inflicting irreversible damages on the RF surface. This paper presents a systematic experimental and simulation programme to understand possible sources and their influence on RF cavity operatio

    Comparison of Ultrasonography and Intravenous Urography in the Screening and Diagnosis of Hematuria Causes

    Get PDF
    Introduction: Our aim was to compare transabdominal ultrasonography (US) and intravenous urography (IVU) in the evaluation of patients with hematuria. Materials and Methods: Two hundred patients with hematuria were assessed by US and IVU, and if needed, by cystoscopy, ureteroscopy, and CT scan, to determine the definite cause of hematuria. The results of US and IVU were compared according to the definite diagnoses. Results: Of 97 patients with microscopic hematuria, 44 (45%) had a documented cause for hematuria, and of 103 patients with gross hematuria, 76 (74%) had a definite disorder (P < .001). Urinary calculi were found in 105 patients, 93 (88.5%) and 73 (69.5%) of which were detected by US and IVU, respectively (P < .001). There were 3 and 6 cases of kidney and bladder neoplasms, respectively, all of which were revealed by US, but only 2 renal tumors were detectable on IVU. Ultrasonography had a higher sensitivity than IVU for diagnoses of kidney calculi, lower ureteral calculi, and urologic neoplasms (95.3% versus 65.1% for kidney calculi, P = .039; 89.7% versus 69.2% for lower ureteral calculi, P < .001; and 100% versus 22.3% for urologic neoplasms, P < .001), but in calculi of the middle and upper ureter and of the whole ureter, there were no differences between US and IVU. Conclusion: Our results are in favor of using US in the initial evaluation of hematuria. However, we must choose our diagnostic tool according to the patient's condition and suspected disorders causing hematuria

    Low cost optical electronic nose for biomedical applications

    Get PDF
    Here we report on the development of a Non-Dispersive Infrared Sensor (NDIR) optical electronic nose, which we intend to target towards healthcare applications. Our innovative electronic nose uses an array of four different tuneable infra-red detectors to analyse the gas/volatile content of a sample under test. The instrument has the facility to scan a range of wavelengths from 3.1 μm and 10.5 μm with a step size of 20 nm. The use of a tuneable filter, instead of expensive lasers, reduces the overall cost of the system. We have tested our instrument to a range of gases and vapours and our electronic nose is able to detect, for example, methane down to single figure ppm at two different wavelengths. It is also able to discriminate between complex odours, here we present the results from 6 different chemicals. In this case, fixed frequency measurements were used as “virtual sensors” and their output then analysed by (PCA), which for all but one case, showed good separation

    Massive malignant pleural effusion due to lung adenocarcinoma in 13-year-old boy

    Get PDF
    A 13-year-old boy with no risk factors for lung cancer presented with a massive left-sided pleural effusion and a mediastinal shift on chest radiography and computed tomography. A chest tube drained bloody pleural fluid with an exudative pattern. A pleural biopsy and wedge biopsy of the left lower lobe revealed mucinous adenocarcinoma in the left lower lobe wedge biopsy and metastatic adenocarcinoma in the pleural biopsy. The patient is currently undergoing chemotherapy. Radiotherapy is planned after shrinkage of the tumor. Adenocarcinoma of the lung is very rarely seen in teenagers or children, especially in the absence of risk factors. © SAGE Publications

    Security threats in network coding-enabled mobile small cells

    Get PDF
    The recent explosive growth of mobile data traffic, the continuously growing demand for higher data rates, and the steadily increasing pressure for higher mobility have led to the fifth-generation mobile networks. To this end, network-coding (NC)-enabled mobile small cells are considered as a promising 5G technology to cover the urban landscape by being set up on-demand at any place, and at any time on any device. In particular, this emerging paradigm has the potential to provide significant benefits to mobile networks as it can decrease packet transmission in wireless multicast, provide network capacity improvement, and achieve robustness to packet losses with low energy consumption. However, despite these significant advantages, NC-enabled mobile small cells are vulnerable to various types of attacks due to the inherent vulnerabilities of NC. Therefore, in this paper, we provide a categorization of potential security attacks in NC-enabled mobile small cells. Particularly, our focus is on the identification and categorization of the main potential security attacks on a scenario architecture of the ongoing EU funded H2020-MSCA project “SECRET” being focused on secure network coding-enabled mobile small cells

    Comparison of Three Different Techniques of Inverted Internal Limiting Membrane Flap in Treatment of Large Idiopathic Full-Thickness Macular Hole.

    Get PDF
    Purpose: To evaluate and compare three different techniques of inverted internal limiting membrane (ILM) flap in the treatment of large idiopathic full-thickness macular hole. Methods: In a comparative interventional case series, 72 eyes from 72 patients with large (\u3e 400 µm) full-thickness macular hole were randomly enrolled into three different groups: group A - hemicircular ILM peel with temporally hinged inverted flap; group B - circular ILM peel with temporally hinged inverted flap; and group C - circular ILM peel with superior inverted flap. Best-corrected visual acuity (BCVA), anatomical closure rate, and ellipsoid zone (EZ) or external limiting membrane (ELM) defects were evaluated preoperatively, at week 1, and months 1, 3 and 6 after surgery. Results: There were 24 eyes in group A, 23 in group B, and 25 in group C. In all three groups, larger diameter macular hole was associated with worse preoperative visual acuity (r=0.625, P\u3c0.001). Mean BCVA improved significantly in all three groups 6 months after surgery (0.91vs 0.55, p\u3c0.001). 6 months after surgery, mean BCVA improved from 0.91 logMAR to 0.52±0.06 in group A, 0.90 to 0.53±0.06 in group B, and 0.91 to 0.55±0.11 in group C. In group A vs. B vs. C, improvement of BCVA was 0.380±0.04 vs. 0.383±0.04 vs. 0.368±0.11 logMAR, with no statistically significant difference between groups (P=0.660). The rate of successful hole closure was 87.5% vs. 91.3% vs. 100%. Although the closure rate was 100% in Group C (circular ILM peel with superiorly hinged inverted flap), this difference was not statistically significant (P=0.115). Conclusion: ILM peel with an inverted flap is a highly effective procedure for the treatment of large, full-thickness macular hole. Different flap techniques have comparable results, indicating that the technique can be chosen based on surgeon preference

    Cloning and expression of codon-optimized recombinant darbepoetin alfa in Leishmania tarentolae T7-TR

    Get PDF
    Darbepoetin alfa is an engineered and hyperglycosylated analog of recombinant human erythropoietin (EPO) which is used as a drug in treating anemia in patients with chronic kidney failure and cancer. This study desribes the secretory expression of a codon-optimized recombinant form of darbepoetin alfa in Leishmania tarentolae T7-TR. Synthetic codon-optimized gene was amplified by PCR and cloned into the pLEXSY-I-blecherry3 vector. The resultant expression vector, pLEXSYDarbo, was purified, digested, and electroporated into the L. tarentolae. Expression of recombinant darbepoetin alfa was evaluated by ELISA, reverse-transcription PCR (RT-PCR), Western blotting, and biological activity. After codon optimization, codon adaptation index (CAI) of the gene raised from 0.50 to 0.99 and its GC content changed from 56 to 58. Expression analysis confirmed the presence of a protein band at 40 kDa. Furthermore, reticulocyte experiment results revealed that the activity of expressed darbepoetin alfa was similar to that of its equivalent expressed in Chinese hamster ovary (CHO) cells. These data suggested that the codon optimization and expression in L. tarentolae host provided an efficient approach for high level expression of darbepoetin alfa. © 2015 Elsevier Ltd. All rights reserved
    corecore