57 research outputs found

    Linking non-peptide ligand binding mode to activity at the human cholecystokinin-2 receptor.

    No full text
    International audienceGiven the importance of G-protein-coupled receptors as pharmacological targets in medicine, efforts directed at the understanding the molecular mechanism by which pharmacological compounds regulate their activity is of paramount importance. Here, we investigated at an atomic level the mechanism of inverse agonism and partial agonism of two high affinity, high selectivity very similar non-peptide ligands of the cholecystokinin-2 receptor (CCK2R) which differ by the absence or presence of a methyl group on their indole moiety. Using in silico, site-directed mutagenesis and pharmacological experiments, we demonstrated that these functionally different activities are due to differing anchoring modes of the two compounds to a residue of helix II (Thr-2.61) in the inactive state of the CCK2R. The binding mode of the inverse agonist allows the ligand to interact through its phenyl moiety with a key amino acid for CCK2R activation (Trp-6.48), preventing rotation of helix VI and, thus, CCK2R activation, whereas the partial agonist binds deeper into the binding pocket and closer to helix V, so that CCK2R activation is favored. This study on the molecular mechanism of ligand action opens the possibility of target-based optimization of G protein-coupled receptor non-peptide ligands

    Regulation of membrane cholecystokinin-2 receptor by agonists enables classification of partial agonists as biased agonists.

    No full text
    International audienceGiven the importance of G-protein-coupled receptors as pharmacological targets in medicine, efforts directed at understanding the molecular mechanism by which pharmacological compounds regulate their presence at the cell surface is of paramount importance. In this context, using confocal microscopy and bioluminescence resonance energy transfer, we have investigated internalization and intracellular trafficking of the cholecystokinin-2 receptor (CCK2R) in response to both natural and synthetic ligands with different pharmacological features. We found that CCK and gastrin, which are full agonists on CCK2R-induced inositol phosphate production, rapidly and abundantly stimulate internalization. Internalized CCK2R did not rapidly recycle to plasma membrane but instead was directed to late endosomes/lysosomes. CCK2R endocytosis involves clathrin-coated pits and dynamin and high affinity and prolonged binding of β-arrestin1 or -2. Partial agonists and antagonists on CCK2R-induced inositol phosphate formation and ERK1/2 phosphorylation did not stimulate CCK2R internalization or β-arrestin recruitment to the CCK2R but blocked full agonist-induced internalization and β-arrestin recruitment. The extreme C-terminal region of the CCK2R (and more precisely phosphorylatable residues Ser(437)-Xaa(438)-Thr(439)-Thr(440)-Xaa(441)-Ser(442)-Thr(443)) were critical for β-arrestin recruitment. However, this region and β-arrestins were dispensable for CCK2R internalization. In conclusion, this study allowed us to classify the human CCK2R as a member of class B G-protein-coupled receptors with regard to its endocytosis features and identified biased agonists of the CCK2R. These new important insights will allow us to investigate the role of internalized CCK2R*β-arrestin complexes in cancers expressing this receptor and to develop new diagnosis and therapeutic strategies targeting this receptor

    Cyclodextrin as carrier of peptide hormones. Conformational and biological properties of beta-cyclodextrin/gastrin constructs

    No full text
    Schaschke N, Fiori S, Weyher E, et al. Cyclodextrin as carrier of peptide hormones. Conformational and biological properties of beta-cyclodextrin/gastrin constructs. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. 1998;120(28):7030-7038

    Characterization of a novel five-transmembrane domain cholecystokinin-2 receptor splice variant identified in human tumors

    No full text
    The cholecystokinin-2 receptor (CCK2R), is expressed in cancers where it contributes to tumor progression. The CCK2R is over-expressed in a sub-set of tumors, allowing its use in tumor targeting with a radiolabel ligand. Since discrepancies between mRNA levels and CCK2R binding sites were noticed, we searched for abnormally spliced variants in tumors from various origins having been previously reported to frequently express cholecystokinin receptors, such as medullary thyroid carcinomas, gastrointestinal stromal tumors, leiomyomas and leiomyosarcomas, and gastroenteropancreatic tumors. A variant of the CCK2R coding for a putative five-transmembrane domains receptor has been cloned. This variant represented as much as 6% of CCK2R levels. Ectopic expression in COS-7 cells revealed that this variant lacks biological activity due to its sequestration in endoplasmic reticulum. When co-expressed with the CCK2R, this variant diminished membrane density of the CCK2R and CCK2R-mediated activity (phospholipase-C and ERK activation). In conclusion, a novel splice variant acting as a dominant negative on membrane density of the CCK2R may be of importance for the pathophysiology of certain tumors and for their in vivo CCK2R-targeting

    Regul. Pept.

    No full text
    • …
    corecore