121 research outputs found

    High magnetic field induced charge density waves and sign reversal of the Hall coefficient in graphite

    Full text link
    We report on the investigation of magnetic field induced charge density wave and Hall coefficient sign reversal in a quasi-two dimensional electronic system of highly oriented pyrolytic graphite under very strong magnetic field. The change of Hall sign coefficient from negative to positive occurs at low temperature and high magnetic field just after the charge density wave transition, suggesting the role of hole-like quasi-particles in this effect. Angular dependent measurements show that the charge density wave transition and Hall sign reversal fields follow the magnetic field component along the c-axis of graphite

    Relationship between heating atmosphere and copper foil impurities during graphene growth via low pressure chemical vapor deposition

    Get PDF
    Low-pressure chemical vapor deposition synthesis of graphene films on two different Cu foils, with different surface oxygen and carbon contents, was performed by controlling H2 and/or Ar flow rates during heating. The influences of heating atmosphere on the final impurity level, quality of the synthesized graphene films and thickness uniformity were investigated depending on Cu foil impurities. Heating of carbon-rich, but oxygen-poor Cu foil in H2 environment resulted in covering the foil surface by residual carbon which then acted as active sites for multilayer graphene growth. Ar-only flow was required during heating to promote high quality graphene growth on this foil. On carbon-poor, but oxygen-rich Cu foil high quality graphene growth was promoted when the heating was carried out under Ar/H2 environment. Almost no carbon residues were observed on this foil even under H2 only flow during heating. The heating atmosphere affected not only graphene growth, but also the type and amount of impurities formed on the surface. H2 and Ar/H2 heating resulted in the formation of spherical nanometer-sized impurities, while irregular-shaped, large (a few mm) SiO2 impurities were observed when Ar alone was used during heating. Quality of the grown films was tested by Quantum Hall Effect measurements

    Edge Magneto-Fingerprints in Disordered Graphene Nanoribbons

    Get PDF
    We report on (magneto)-transport experiments in chemically derived narrow graphene nanoribbons under high magnetic fields (up to 60 Tesla). Evidences of field-dependent electronic confinement features are given, and allow estimating the possible ribbon edge symmetry. Besides, the measured large positive magnetoconductance indicates a strong suppression of backscattering induced by the magnetic field. Such scenario is supported by quantum simulations which consider different types of underlying disorders (smooth edge disorder and long range Coulomb scatters).Comment: 4 pages, 4 figure

    Magneto-transport Subbands Spectroscopy in InAs Nanowires

    Get PDF
    We report on magneto-transport measurements in InAs nanowires under large magnetic field (up to 55T), providing a direct spectroscopy of the 1D electronic band structure. Large modulations of the magneto-conductance mediated by an accurate control of the Fermi energy reveal the Landau fragmentation, carrying the fingerprints of the confined InAs material. Our numerical simulations of the magnetic band structure consistently support the experimental results and reveal key parameters of the electronic confinement.Comment: 13 Pages, 5 figure

    Band bending inversion in Bi2_2Se3_3 nanostructures

    Full text link
    Shubnikov-de-Haas oscillations were studied under high magnetic field in Bi2_2Se3_3 nanostructures grown by Chemical Vapor Transport, for different bulk carrier densities ranging from 3×1019cm−33\times10^{19}\text{cm}^{-3} to 6×1017cm−36\times10^{17}\text{cm}^{-3}. The contribution of topological surface states to electrical transport can be identified and separated from bulk carriers and massive two-dimensional electron gas. Band bending is investigated, and a crossover from upward to downward band bending is found at low bulk density, as a result of a competition between bulk and interface doping. These results highlight the need to control electrical doping both in the bulk and at interfaces in order to study only topological surface states.Comment: 6 pages, 4 figure

    Unveiling the Landau Levels Structure of Graphene Nanoribbons

    Get PDF
    Magnetotransport measurements are performed in ultraclean (lithographically patterned) graphene nanoribbons down to 70 nm. At high magnetic fields, a fragmentation of the electronic spectrum into a Landau levels pattern with unusual features is unveiled. The singular Landau spectrum reveals large magneto-oscillations of the Fermi energy and valley degeneracy lifting. Quantum simulations suggest some disorder threshold at the origin of mixing between opposite chiral magnetic edge states and disappearance of quantum Hall effect

    Unconventional quantum oscillations and evidence of non-trivial electronic states in quasi-two-dimensional electron system at complex oxide interfaces

    Full text link
    The simultaneous occurrence of electric-field controlled superconductivity and spin-orbit interaction makes two-dimensional electron systems (2DES) constructed from perovskite transition metal oxides promising candidates for the next generation of spintronics and quantum computing. It is, however, essential to understand the electronic bands thoroughly and verify the predicted electronic states experimentally in these 2DES to advance technological applications. Here, we present novel insights into the electronic states of the 2DES at oxide interfaces through comprehensive investigations of Shubnikov-de Haas oscillations in two different systems: EuO/KTaO3_3 (EuO/KTO) and LaAlO3_3/SrTiO3_3 (LAO/STO). To accurately resolve these oscillations, we conducted transport measurements in high magnetic fields up to 60 T and low temperatures down to 100 mK. For 2D confined electrons at both interfaces, we observed a progressive increase of oscillations frequency and cyclotron mass with the magnetic field. We interpret these intriguing findings by considering the existence of non-trivial electronic bands, for which the E−kE-k dispersion incorporates both linear and parabolic dispersion relations. In addition to providing experimental evidence for topological-like electronic states in KTO-2DES and STO-2DES, the unconventional oscillations presented in this study establish a new paradigm for quantum oscillations in 2DES based on perovskite transition metal oxides, where the oscillations frequency exhibits quadratic dependence on the magnetic field

    Anisotropic transport properties of quasiballistic InAs nanowires under high magnetic field

    Get PDF
    The magnetoconductance of a long channel InAs nanowire based field effect transistor in the quasiballistic regime under large magnetic field is investigated. The quasi-1D nanowire is fully characterized by a bias voltage spectroscopy and measurements under magnetic field up to 50 T applied either perpendicular or parallel to the nanowire axis lifting the spin and orbital degeneracies of the subbands. Under normal magnetic field, the conductance shows quantized steps due to the backscattering reduction and a decrease due to depopulation of the 1D modes. Under axial magnetic field, a quasioscillatory behavior is evidenced due to the coupling of the magnetic field with the angular momentum of the wave function. In addition the formation of cyclotron orbits is highlighted under high magnetic field. The experimental results are compared with theoretical calculation of the 1D band structure and related parameters.High magnetic field measurements were performed at LNCMI under the EMFL proposal TSC10-213. Parts of the calculations were run on the CCRT/Curie machine using allocations from GENCI. This work is supported by the Grant NEXT N°.ANR-10-LABX-0037 in the framework of the “Programme des Investissements d’Avenir”
    • 

    corecore