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We perform magnetotransport measurements in lithographically patterned graphene nanoribbons down

to a 70 nm width. The electronic spectrum fragments into an unusual Landau levels pattern, characteristic

of Dirac fermion confinement. The two-terminal magnetoresistance reveals the onset of magnetoelec-

tronic subbands, edge currents and quantized Hall conductance. We bring evidence that the magnetic

confinement at the edges unveils the valley degeneracy lifting originating from the electronic confinement.

Quantum simulations suggest some disorder threshold at the origin of mixing between chiral magnetic

edge states and disappearance of quantum Hall effect.
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Introduction.—To benefit from the unusual transport
properties of graphene [1,2] for future carbon-based nano-
electronics [3], the fabrication of clean materials has be-
come a central issue. Of great concern is the design of
graphene nanoribbons (GNRs), which allow some gap
engineering [4]. The transverse confinement leads to 1D
electronic subbands, whose details depend on the width
and edge geometry of the ribbons [5].

In the presence of a strong perpendicular magnetic field,
the anomalous quantum Hall Effect (QHE) develops in 2D
graphene with unique properties widely discussed in the
literature [6]. In nanoribbons, the electronic spectrum is
predicted to evolve into magneto-electronic sub-bands re-
sulting from a competition between magnetic and elec-
tronic confinement [2,5]. This is partly unveiled by
anomalous Shubnikov–de Haas oscillations when the mag-
netic length becomes comparable to the ribbon width [7].
However, it is puzzling to note the lack of experimental
evidence of Hall quantization in GNRs narrower than
200 nm [8–11]. Recent magnetotransport experiments in
chemically derived [10] and lithographic [9,11] GNRs
reported some signatures of chiral magnetic edge states
revealed by a large positive magnetoconductance.
However, in all these experiments, the conductance is far
from being quantized and transport remains strongly dif-
fusive, thus jeopardizing a convincing observation of the
underlying Landau levels. Several sources of disorder are
suspected to crosslink chiral edge currents, thus preventing
QHE from developing [12]. Recent calculations also sug-
gest a possible role of electron-electron interaction in the
suppression of the conductance quantization [13]. A de-
tailed characterization of Landau levels in GNRs thus
remains to be accomplished.

In this Letter, we report two-terminal quantum Hall
resistance measurements on GNR devices. We bring evi-
dence of the Landau levels structure and of a singular
electronic spectrum driven by the magnetic confinement
and the edge symmetry at high fields. To rationalize these
features, we simulate the spatial extension of the corre-
sponding magnetic edge states and their distribution in
presence of disorder.
Graphene devices are obtained by mechanical exfolia-

tion of graphite onto nþþSi=SiO2 (300 nm) substrates
followed by e-beam lithography and thermal evaporation
of the metallic electrodes. The graphene flakes are pat-
terned into ribbons by oxygen plasma etching, using
PMMA as an etching mask. A set of connected GNRs
are prepared with width (W) ranging from 60 to 100 nm
and length (L) from 350 to 800 nm. In what follows,
we present extensive results for two devices (inset
Fig. 1), sample A (L ¼ 350 nm, W ¼ 100 nm) and B

FIG. 1 (color online). Experimental GðVgÞ curves measured at
4.2 K on two GNR devices of width 100 and 70 nm (sample A
and B). Inset: the AFM image of the devices.
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(L ¼ 750 nm, W ¼ 70 nm), having the hallmarks of the
overall samples.

After thermal annealing in vacuum, the measured con-
ductance GðVgÞ at 4.2 K (Fig. 1) exhibits a minimum in

correspondence of the charge neutrality point (CNP) at
relatively low back-gate potential Vg ¼ VCNP ¼ 2:5 V

and �0:5 V for samples A and B, respectively, thus
pinpointing a negligible residual doping. From a numer-
ical calculation of the electrostatic coupling between
the ribbons and the back-gate ([14]), the carrier density
is estimated as nðm�2Þ � 1:5� 1015 � ðVgðVÞ � VCNPÞ
while the Fermi energy scales as EFðmeVÞ �
40�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VgðVÞ � VCNP

q

. From the GðVgÞ curves, and assum-

ing a contact resistance in the range 1–4 k� [15], we
infer an electronic mean free path ‘m � 50–120 nm
(80–120 nm) for sample AðBÞ at Vg ¼ �20 V. In both

cases, lm �W and L=lm � 2–7, which suggests a nearly
quasiballistic transport regime. The good quality of the
samples is also confirmed by the estimated large field effect
mobility at 4.2 K �AðBÞ � 1200ð3500Þ cm2=ðVsÞ, and by

the Fabry-Perot conductance modulations observed at 2 K.
Under a perpendicular magnetic field, the two-terminal

resistance shows a nontrivial sample-shape dependent pro-
file with fingerprints of both the quantized Hall resistance
for filling factors �ðneh=eBÞ ¼ 4ðnþ 1=2Þ and the longi-
tudinal resistance for intermediate � values [16]. Figure 2
shows the two-probe MR up to 55 T at various Vg for

sample A. An oscillatory behavior of the resistance along
with quantized minima (h=6e2) and resistance plateaus
(h=2e2) are clearly visible. The MR plot as a function of
the inverse magnetic field shows typical Shubnikov–de
Haas oscillations [17]. However, a strong departure from

the 1=B periodicity is observed for large numbers of occu-
pied Landau levels N (inset, Fig. 2 circle marks). The
linearity and its deviation above N � 9 are well repro-
duced by the calculation of Nð1=BÞ in the frame of
semiclassical Bohr-Sommerfeld quantization rule with a
hard-wall confinement (blue line). From the Eq. (1) in [17],
we infer an effective width of 90 nm, close to the nominal
one (100 nm), and a cyclotron radius (lc ¼ kF@=eB) of
about 45 nm when entering the sublinear regime. This is a
convincing signature that the electronic confinement starts
to overcome the magnetic one when the cyclotron radius
becomes larger than W=2.
Figure 3 shows the conductance profiles of the two

GNRs as a function of the filling factor. The curves are
deduced from the MR experiments, i.e., a constant charge
density along with a pulse field sweep, meaning
an increase of the Landau energy broadening versus �.
For sample A [Fig. 3(a)], a clear 2G0 Hall plateau (with
G0 ¼ 2e2=h) is observed at � ¼ 2, thus providing direct
evidence of a single layer graphene. For larger incompress-
ible charge densities, at � ¼ 6; 10; . . . , only maxima
of conductance develop instead of the expected
ð6; 10; . . .ÞG0 plateaus. This overall behavior is consis-
tently described in the context of the conformal invariance
of the conductance, where the distortion of the plateau is
driven by the device aspect ratio � ¼ L=W. Following the
theory developed in [16], we reasonably well simulate our
data for �fit ¼ 4:1 (to be compared to �exp ¼ 3:5) and a

broadening �� � 0:84 and 1.05 around � ¼ 2 and 6,
respectively, [Fig. 3(a), dashed line]. The larger broadening
at higher filling factor is therefore responsible for the
shrinkage of the 6G0 quantized state.

FIG. 2 (color online). Two-probe perpendicular MR measured
at 4.2 K on sample A, for selected Vg. The inset shows anoma-

lous 1=B Shubnikov-de Haas oscillations with circle marks
indicating the number of occupied Landau levels N as a function
of the 1=B locations deduced from the MR curve at �40 V. The
red crosses are the Nð1=BÞ simulated data from the band struc-
ture [Fig. 5(a), inset]. The blue curve is the calculated Nð1=BÞ
from [17].

FIG. 3 (color online). (a) Experimental MC of sample Aversus
the filling factor deduced from the MR curves at selected Vg,

from �40 V (top) to 0 V (bottom), by step of 5 V. The dashed
line is the simulated Gð�Þ. (b) The same for sample B at different
Vg from �50 V (top) to 0 V (bottom), by step of 5 V. Inset: the

singular MR curves at different Vg exhibiting a double resistance

peak when EF crosses the n ¼ 1 Landau level.
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Despite such an agreement, several intriguing experi-
mental features demand further considerations. (i) The
resistance peaks preceding the h=2e2 plateau on sample
A (i.e. corresponding to the crossing of the n ¼ 1 Landau
level) appear drastically enlarged for the MR curves at
larger Vg (Fig. 2). (ii) Surprisingly, the Hall conductance

of sample B, which is 30% narrower, does not present a
well-defined 2G0 plateau even though the 6G0 quantization
at � ¼ 6 is preserved [Fig. 3(b)]. The suppression of the
2G0 conductance plateau goes along with a well-marked
splitting and broadening of the resistance peak that devel-
ops before the expected plateau [Fig. 3(b) inset]. (iii) Both
samples exhibit a gradual suppression of the 6G0 conduc-
tance at � ¼ 6 as Vg decreases (Fig. 3).

For a deeper understanding of the MR curves and the
related Landau levels pattern, we consider the magnetic
field dependent band structure of two armchair ribbons
(aGNRs) of width W � 100 and 70 nm. Because of the
rather large W, the following discussion does not depend
on the exact number of dimer lines that compose the
ribbons. Figure 4 shows the band structures of the narrow-
est aGNR around the CNP at B ¼ 0 and 50 T, obtained on
the basis of our single-orbital per atom nearest-neighbor
tight-binding description [5]. Note that the armchair
boundary conditions entails the valley degeneracy lifting
already at B ¼ 0. As the magnetic field rises, magnetic and
spatial confinement starts competing, with a progressive
increase of the bottom of the bands and the flattening of
their central region; see Fig. 4(b). This is an indication of
the development of Landau levels. The magnetic confine-
ment in the region of the bulk is so strong that these states
do not feel the effect of the edges and they are valley-
degenerate as in 2D graphene. However, when moving
away from the bulk (i.e., at higher jkj in the Brillouin
zone) the effect of the edges becomes important again.
The band energy rises (this corresponds to the formation of
chiral edge channels) and the valley degeneracy is lost. In
fact, when the plateau of a Landau level ends, one of the
two bands rises while the other one first decreases and then
rises again, see the blue circles in Fig. 4(b). The magnetic
field dependence of the minimum energy of each subband

is plotted in Fig. 5 (black solid and dashed lines). Above

10 T, they start to scale as
ffiffiffiffi

B
p

, as for 2D graphene.
However, the valley degeneracy breaking is enhanced since
the propagating states become more confined along the
armchair edges of the ribbon.
To relate the transport oscillations with the underlying

band structure, we compare the intersection of the Fermi
energy and the magneto-subbands spectrum with the loca-
tions of the maxima of the experimental resistance RðBÞ, in
red curves. Figs. 5(a) and 5(b) depict the sample A at two
different doping levels while Fig. 5(c) is for sample B (See
[17] for additional data). Assuming a constant EF (hori-
zontal dashed lines), a good agreement between the
locations of the resistance peaks and the subband depopu-
lation for high quantum numbers is observed at low
fields [inset of Fig. 5(a) and corresponding red crosses in
the inset of Fig. 2]. However, a mismatch gradually
develops below n ¼ 2, when decreasing the electrical
doping level. It eventually reaches several Tesla for
n ¼ 1, as marked by vertical dashed lines in Figs. 5(b)
and 5(c).
To shed light on this issue, we observe that, as in

conventional 2D gas, the Fermi energy is not constant
but varies to accommodate the carriers into the available

FIG. 4 (color online). Band structure of a 70 nm wide aGNR
around the CNP at (a) B ¼ 0 and (b) B ¼ 50 T.

FIG. 5 (color online). (a) Simulated magnetoelectronic sub-
bands versus B for the 100 nm wide aGNR compared to the
experimental MR (red curve) at a selected EF in blue. Black
lines hold for the edge subbands at zero k. The dashed black lines
correspond to the valley degeneracy lifting at nonzero k. The
inset is a zoom at low field. (b) The same as in (a) for a lower
doping level. Dark yellow vertical lines indicate the resistance
peaks shifted to higher magnetic field due to the Fermi energy
pinning at low n. (c) The same as in (a) for the 70 nm wide
aGNR, exhibiting the valley degeneracy breaking.
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subbands. This determines large oscillations of the Fermi
energy at low n (see the blue lines in Fig. 5), with an
evident pinning at the Landau levels at high magnetic
fields. The Fermi energy oscillations provide a clear
explanation of the shape of the MR curves in the high field
regime. Indeed, the inflexion point of the EFðBÞ curves
in between two successive Landau levels well matches
with the minima of resistance; see the arrows in
Figs. 5(a) and 5(b). Besides, the widening of the resistance
peaks at larger Vg and their shift to high fields are a direct

consequence of the stronger Fermi energy pinning onto the
lowest index Landau levels. The absence of a sample B of a
well-defined 2G0 plateau accompanying the splitting and
the widening of the resistance peak also finds a natural
explanation: The second maximum of resistance coincides
with the changeover of EF from the n ¼ 1 Landau level
(solid black line) to the second energy minimum at nonzero
k (dashed black line). This is an unambiguous signature of
the valley degeneracy lifting. It also suggests that the
Landau pattern of sample B is potentially dominated by
an armchair contribution at the edges, since the zigzag
symmetry preserves the 2D graphene valley degeneracy.
Note that such a valley degeneracy breaking induced by an
hard-wall confinement of armchair type is already ex-
pected at 0 T. However, the rather low energy splitting
and the presence of disorder make it unobservable in our
zero field transport measurements. Interestingly, our inter-
pretation suggests that the armchair contribution at edges is
revealed through magnetic confinement, when the propa-
gating states are strongly pushed to the ribbon edges. The
key conditions for observation of the high field magneto
fingerprints are a large enough energy splitting between the
two sublevels and the pinning of the Fermi energy on the
two states. Such conditions are borne out on sample B,
which has a higher mobility and allows for a sharper valley
degeneracy lifting with a higher density of states at the
subband edges.

We finally comment on the gradual suppression of the
6G0 conductance at � ¼ 6 when decreasing the back-gate
voltage (Fig. 3). From a simulation of the spatial profile of
the edge channels at � ¼ 6 as a function of the magnetic
field [17], we infer that the widening of the chiral currents
when decreasing Vg cannot account for the suppression of

the 6G0 conductance in case of defect-free ribbons. In fact
they are still well separated by few tens of nanometers
when the conductance starts to decrease. However, the
introduction of disorder along the ribbon makes the chiral
currents come significantly closer, thus facilitating back-
scattering. As a matter of illustration, Fig. 6 shows the
leakage of edge currents (at � ¼ 6) entailed by a single
charged impurity for a 70 nm wide graphene ribbon.
Conclusion.—Our results unveil an unusual magnetic

structure of graphene nanoribbons providing unambiguous
fingerprints of Dirac fermion magnetic confinement,
reinforcing the key role of edge symmetry. To support
the proposed interpretation, it would be highly desirable
to complement our data with structural information on the
edges, for example, by Raman spectroscopy techniques
[18]. Our quantum simulations also illustrate disorder-
induced mixing of edge currents, at the origin of the
observed degradation of the conductance quantization.
Sample preparations were achieved at LAAS.

Part of this work is supported by EuroMagNET,
contract No. 228043, the NANOSIM-GRAPHENE
Project No. ANR-09-NANO-016-01 and the MAGBiSy
Project No. ANR-08-JCJC-0034-01. A. C. acknowledges
the support of Fondation Nanosciences via the RTRA
Dispograph project.

[1] A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183
(2007).

[2] A. H. Castro Neto et al., Rev. Mod. Phys. 81, 109
(2009).

[3] F. Schwierz, Nature Nanotech. 5, 487 (2010).
[4] M.Y. Han et al., Phys. Rev. Lett. 98, 206805 (2007).
[5] K. Wakabayashi et al., Phys. Rev. B 59, 8271 (1999); K.

Wakabayashi, Phys. Rev. B 64, 125428 (2001); A. Cresti
et al., Nano Res. 1, 361 (2008).

[6] K. S. Novoselov et al., Nature (London) 438, 197 (2005);
Y. B. Zhang et al., Nature (London) 438, 201 (2005); K. S.
Novoselov et al., Science 315, 1379 (2007).

[7] N.M.R. Peres, A. H. Castro Neto, and F. Guinea, Phys.
Rev. B 73, 241403(R) (2006); C. Berger et al., Science
312, 1191 (2006).

[8] F. Molitor et al., Phys. Rev. B 79, 075426 (2009).
[9] J. B. Oostinga et al., Phys. Rev. B 81, 193408 (2010).
[10] J. Poumirol et al., Phys. Rev. B 82, 041413(R)

(2010).
[11] J. Bai et al., Nature Nanotech. 5, 655 (2010).
[12] I. Romanovsky, C. Yannouleas, and U. Landman, Phys.

Rev. B 83, 045421 (2011); E. Prada, P. San-Jose, and L.
Brey, Phys. Rev. Lett. 105, 106802 (2010); C. Ritter, S. S.
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