8,977 research outputs found

    SENSING IMMOBILIZED MOLECULES OF STREPTAVIDIN ON A SILICON SURFACE BY MALDI-TOF MASS SPECTROMETRY AND FLUORESCENCE MICROSCOPY

    Get PDF
    Indexación: Web of Science; Scielo.A hydrogen-terminated Si (111) surface was modified to form an aminoterminated monolayer for immobilization of streptavidin. Cleavage of an N-(ω-undecylenyl)-phthalimide covered surface using hidrazine yields an amino group-modified surface, which serves as a substrate for the attachment of biotin and subsequently streptavidin. We used surface analytical techniques to characterize the surface and to control the course of functionalization before the immobilization of streptavidin. To confirm the presence of the streptavidin Texas red on the surface two powerful techniques available in a standard biochemical laboratory are used, Fluorescence Microscopy and MALDI-TOF that allow us to detect and determine the immobilized streptavidin. This work provides an avenue for the development of devices in which the exquisite binding specificity of biomolecular recognition is directly coupled to a biosensor. In addition, we have demonstrated that MALDI-TOF and fluorescence microscopy are useful techniques for the characterization of silicon functionalized surfaces.http://ref.scielo.org/gm87c

    Flavor Delta(54) in SU(5) SUSY Model

    Full text link
    We design a supersymmetric SU (5) GUT model using \Delta (54), a finite non-abelian subgroup of SU (3)f . Heavy right handed neutrinos are introduced which transform as three-dimensional repre-sentation of our chosen family group. The model successfully reproduces the mass hierarchical mass structures of the Standard Model, and the CKM mixing matrix. It then provides predictions for the light neutrino with a normal hierarchy and masses such that m{\nu},1 \approx 5\times10-3 eV, m{\nu}, 2 \approx 1\times 10-2 eV, and m{\nu},3 \approx 5 \times 10-2 eV. We also provide predictions for masses of the heavy neutrinos, and correc- tions to the tri-bimaximal matrix that fit within experimental limits, e.g. a reactor angle of -7.31o. A simple modification to our model is introduced at the end and is shown to also produce predictions that fall well within those limits.Comment: 22 page

    Investigation of HNCO isomers formation in ice mantles by UV and thermal processing: an experimental approach

    Full text link
    Current gas phase models do not account for the abundances of HNCO isomers detected in various environments, suggesting a formation in icy grain mantles. We attempted to study a formation channel of HNCO and its possible isomers by vacuum-UV photoprocessing of interstellar ice analogues containing H2_2O, NH3_3, CO, HCN, CH3_3OH, CH4_4, and N2_2 followed by warm-up, under astrophysically relevant conditions. Only the H2_2O:NH3_3:CO and H2_2O:HCN ice mixtures led to the production of HNCO species. The possible isomerization of HNCO to its higher energy tautomers following irradiation or due to ice warm-up has been scrutinized. The photochemistry and thermal chemistry of H2_2O:NH3_3:CO and H2_2O:HCN ices was simulated using the Interstellar Astrochemistry Chamber (ISAC), a state-of-the-art ultra-high-vacuum setup. The ice was monitored in situ by Fourier transform mid-infrared spectroscopy in transmittance. A quadrupole mass spectrometer (QMS) detected the desorption of the molecules in the gas phase. UV-photoprocessing of H2_2O:NH3_3:CO/H2_2O:HCN ices lead to the formation of OCN^- as main product in the solid state and a minor amount of HNCO. The second isomer HOCN has been tentatively identified. Despite its low efficiency, the formation of HNCO and the HOCN isomers by UV-photoprocessing of realistic simulated ice mantles, might explain the observed abundances of these species in PDRs, hot cores, and dark clouds

    Highly collimated microquasar jets as efficient cosmic-ray sources

    Get PDF
    Supernova remnants are believed to be the main sites where Galactic cosmic rays originate. This scenario, however, fails to explain some of the features observed in the cosmic-ray spectrum. Microquasars have been proposed as additional candidates, because their non-thermal emission indicates the existence of efficient particle acceleration mechanisms in their jets. A promising scenario envisages the production of relativistic neutrons in the jets, that decay outside the system injecting relativistic protons to the surroundings. The first investigations of this scenario suggest that microquasars might be fairly alternative cosmic-ray sources. We aim at assessing the role played by the degree of collimation of the jet on the cosmic-ray energetics in the neutron-carrier scenario, as well as the properties of the emission region. Our goals are to explain the Galactic component of the observed proton cosmic-ray spectrum at energies higher than 10\sim 10 GeV and to relate the mentioned jet properties with the power and spectral index of the produced cosmic rays. We find that collimated jets, with compact acceleration regions close to the jet base, are very efficient sources that could deliver a fraction of up to 0.01\sim 0.01 of their relativistic proton luminosity into cosmic rays. Collimation is the most significant feature regarding efficiency; a well collimated jet might be 4\sim 4 orders of magnitude more efficient than a poorly collimated one. The main feature of the presented mechanism is the production of a spectrum with a steeper spectral index (2.3\sim 2.3 at energies up to 10\sim 10 TeV) than in the supernova scenario, and closer to what is observed. The predictions of our model may be used to infer the total contribution of the population of Galactic microquasars to the cosmic ray population, and therefore to quantitatively assess their significance as cosmic-ray sources.Comment: 11 pages, 14 figure

    Bose-Einstein Condensation of 88^{88}Sr Through Sympathetic Cooling with 87^{87}Sr

    Get PDF
    We report Bose-Einstein condensation of 88^{88}Sr, which has a small, negative s-wave scattering length (a88=2a_{88}=-2\,a0a_0). We overcome the poor evaporative cooling characteristics of this isotope by sympathetic cooling with 87^{87}Sr atoms. 87^{87}Sr is effective in this role in spite of the fact that it is a fermion because of the large ground state degeneracy arising from a nuclear spin of I=9/2I=9/2, which reduces the impact of Pauli blocking of collisions. We observe a limited number of atoms in the condensate (Nmax104N_{max}\approx 10^4) that is consistent with the value of a88a_{88} and the optical dipole trap parameters.Comment: 4 pages, 4 figure

    Degenerate Fermi Gas of 87^{87}Sr

    Get PDF
    We report quantum degeneracy in a gas of ultra-cold fermionic 87^{87}Sr atoms. By evaporatively cooling a mixture of spin states in an optical dipole trap for 10.5\,s, we obtain samples well into the degenerate regime with T/TF=0.26.06+.05T/T_F=0.26^{+.05}_{-.06}. The main signature of degeneracy is a change in the momentum distribution as measured by time-of-flight imaging, and we also observe a decrease in evaporation efficiency below T/TF0.5T/T_F \sim 0.5.Comment: 4 pages, 3 figure

    Runaway evaporation for optically dressed atoms

    Get PDF
    Forced evaporative cooling in a far-off-resonance optical dipole trap is proved to be an efficient method to produce fermionic- or bosonic-degenerated gases. However in most of the experiences, the reduction of the potential height occurs with a diminution of the collision elastic rate. Taking advantage of a long-living excited state, like in two-electron atoms, I propose a new scheme, based on an optical knife, where the forced evaporation can be driven independently of the trap confinement. In this context, the runaway regime might be achieved leading to a substantial improvement of the cooling efficiency. The comparison with the different methods for forced evaporation is discussed in the presence or not of three-body recombination losses

    Photo-desorption of H2O:CO:NH3 circumstellar ice analogs: Gas-phase enrichment

    Get PDF
    We study the photo-desorption occurring in H2_2O:CO:NH3_3 ice mixtures irradiated with monochromatic (550 and 900 eV) and broad band (250--1250 eV) soft X-rays generated at the National Synchrotron Radiation Research Center (Hsinchu, Taiwan). We detect many masses photo-desorbing, from atomic hydrogen (m/z = 1) to complex species with m/z = 69 (e.g., C3_3H3_3NO, C4_4H5_5O, C4_4H7_7N), supporting the enrichment of the gas phase. At low number of absorbed photons, substrate-mediated exciton-promoted desorption dominates the photo-desorption yield inducing the release of weakly bound (to the surface of the ice) species; as the number of weakly bound species declines, the photo-desorption yield decrease about one order of magnitude, until porosity effects, reducing the surface/volume ratio, produce a further drop of the yield. We derive an upper limit to the CO photo-desorption yield, that in our experiments varies from 1.4 to 0.007 molecule photon1^{-1} in the range 10151020\sim 10^{15} - 10^{20}~absorbed photons cm2^{-2}. We apply these findings to a protoplanetary disk model irradiated by a central T~Tauri star
    corecore